Summary The onset of stomatal closure reduces transpiration during drought. In seed plants, drought causes declines in plant water status which increases leaf endogenous abscisic acid (ABA) levels required for stomatal closure. There are multiple possible points of increased belowground resistance in the soil–plant atmospheric continuum that could decrease leaf water potential enough to trigger ABA production and the subsequent decreases in transpiration.We investigate the dynamic patterns of leaf ABA levels, plant hydraulic conductance and the point of failure in the soil–plant conductance in the highly embolism‐resistant speciesCallitris tuberculatausing continuous dendrometer measurements of leaf water potential during drought.We show that decreases in transpiration and ABA biosynthesis begin before any permanent decreases in predawn water potential, collapse in soil–plant hydraulic pathway and xylem embolism spread.We find that a dynamic but recoverable increases in hydraulic resistance in the soil in close proximity to the roots is the most likely driver of declines in midday leaf water potential needed for ABA biosynthesis and the onset of decreases in transpiration.
more »
« less
Silencing ZmPP2C‐A10 with a foxtail mosaic virus (FoMV) derived vector benefits maize growth and development following water limitation
Abstract Global climate change is causing more frequent and severe droughts, which can have negative impacts on plant growth and crop productivity. Under drought conditions, plants produce the hormone ABA (abscisic acid), which regulates adaptive responses, such as stomatal closure and root elongation. Plant viruses have been used in the lab to convey new traits to plants and could also be used to increase production of ABA or to enhance downstream plant drought resistance responses.In this study, foxtail mosaic virus (FoMV) was used to silenceZmPP2C‐A10, a negative regulator of ABA signalling, in maize (Zea maysL.). Both silenced and control plants were exposed to an 8‐day drought treatment, followed by a 30‐day period of rewatering, after which indicators of drought resistance were measured.After drought treatment, we observed a nearly twofold increase in expression of a stress‐mitigation gene,ZmRAB17, reduced chlorophyll fluorescence changes (indicator of stress), and increased plant biomass and development in theZmPP2C‐A10‐silenced maize compared to controls.These results demonstrate that the FoMV system can be used to silence endogenous expression ofZmPP2C‐A10and increase maize tolerance to drought. This could offer a useful tool to improve crop traits and reduce yield loss during the growing season.
more »
« less
- Award ID(s):
- 2026068
- PAR ID:
- 10482030
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Plant Biology
- Volume:
- 25
- Issue:
- 6
- ISSN:
- 1435-8603
- Page Range / eLocation ID:
- 956 to 964
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Drought and the availability of nitrate, the predominant source of nitrogen (N) in agriculture, are major factors limiting plant growth and crop productivity. The dissection of the transcriptional networks' components integrating droght stress and nitrate responses provides valuable insights into how plants effectively balance stress response with growth programs. Recent evidence inArabidopsis thalianaindicates that transcription factors (TFs) involved in abscisic acid (ABA) signaling affect N metabolism and nitrate responses, and reciprocally, components of nitrate signaling might affect ABA and drought gene responses. Advances in understanding regulatory circuits of nitrate and drought crosstalk in plant tissues empower targeted genetic modifications to enhance plant development and stress resistance, critical traits for optimizing crop yield and promoting sustainable agriculture.more » « less
-
Abstract Asexual reproduction plays a fundamental role in the structure, dynamics and persistence of perennial grasslands. Thus, assessing how asexual reproductive traits of plant communities respond to drought may be key for understanding grassland resistance to drought and recovery following drought.Here, we quantified three asexual reproductive traits (i.e. above‐ground tiller abundance, below‐ground bud abundance and the ratio of tillers to buds) during a 4‐year severe drought and a 2‐year drought recovery period in four grasslands that spanned an aridity gradient in northern China. We also assessed the relationship between these traits and the resistance and recovery of above‐ground net primary productivity (ANPP).We found that drought had limited and largely inconsistent effects on asexual reproduction among drought and recovery years and grasslands overall. Drought increased tiller abundance in the first treatment year and reduced bud banks by the fourth treatment year across grasslands. However, neither of the three asexual reproductive traits were correlated with drought resistance of ANPP. Drought legacies differed among the four grasslands with positive, negative and no legacies evident for the three asexual reproductive traits, and no clear relationship with aridity. Bud banks and tiller to bud ratio decreased and increased, respectively, in the first recovery year, but not in the second recovery year. In contrast to drought resistance, community bud abundance was strongly related to recovery, such that communities with higher bud abundance had greater ANPP recovery following drought.Synthesis. These results suggest that asexual reproductive traits may be important drivers of ecosystem recovery after drought, but that variable responses of these asexual reproduction traits during drought complicates predictions of overall grassland responses.more » « less
-
Summary Genome editing is a revolution in biotechnology for crop improvement with the final product lacking transgenes. However, most derived traits have been generated through edits that create gene knockouts.Our study pioneers a novel approach, utilizing gene editing to enhance gene expression by eliminating transcriptional repressor binding motifs.Building upon our prior research demonstrating the protein‐boosting effects of the transcription factor NF‐YC4, we identified conserved motifs targeted by RAV and WRKY repressors in theNF‐YC4promoters from rice (Oryza sativa) and soybean (Glycine max). Leveraging CRISPR/Cas9 technology, we deleted these motifs, resulting in reduced repressor binding and increasedNF‐YC4expression. This strategy led to increased protein content and reduced carbohydrate levels in the edited rice and soybean plants, with rice exhibiting up to a 68% increase in leaf protein and a 17% increase in seed protein, and soybean showing up to a 25% increase in leaf protein and an 11% increase in seed protein.Our findings provide a blueprint for enhancing gene expression through precise genomic deletions in noncoding sequences, promising improved agricultural productivity and nutritional quality.more » « less
-
Abstract In semi‐arid regions where drought and wildfire events often co‐occur, such as in Southern California chaparral, relationships between plant hydration, drought‐ and fire‐adapted traits may explain landscape‐scale wildfire dynamics. To examine these patterns, fire scientists and plant physiologists quantify hydration in plants via mass‐based metrics of water content, including live fuel moisture, or pressure‐based metrics of physiological status, such as xylem water potential; however, relationships across these metrics, plant traits and flammability remain unresolved.To determine the impact of hydration on tissue‐level flammability (leaves and stems), we conducted laboratory dehydration tests across wet and dry seasons in which we simultaneously measured xylem water potential, live fuel moisture and flammability. We tested two widespread chaparral shrubs,Adenostoma fasciculatumandCeanothus megacarpus.Live fuel moisture showed a threshold‐type relationship with tissue flammability (increased ignitability and combustibility at specific hydration levels) that aligned with drought‐response traits (turgor loss point) and fire behaviour (increased fire likelihood and spread) identified at the landscape scale. Water potential was the better predictor of flammability in linear statistical models.A. fasciculatumwas more flammable thanC. megacarpus, and both species were more flammable during the wet growing season, suggesting seasonal growth or drought‐related tissue characteristics other than moisture content, such as lignin or chemical content, are critical for determining flammability.Our results suggest a mechanism for landscape‐scale increases in flammability at specific levels of drought stress. Integration of drought‐related traits, such as the turgor loss point, might improve models of wildfire risk in drought‐ and fire‐prone systems. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
An official website of the United States government

