This content will become publicly available on December 21, 2024
We first provide a stochastic formula for the Carathéodory distance in terms of general Markovian couplings and prove a comparison result between the Carathéodory distance and the complete Kähler metric with a negative lower curvature bound using the Kendall–Cranston coupling. This probabilistic approach gives a version of the Schwarz lemma on complete noncompact Kähler manifolds with a further decomposition Ricci curvature into the orthogonal Ricci curvature and the holomorphic sectional curvature, which cannot be obtained by using Yau–Royden's Schwarz lemma. We also prove coupling estimates on quaternionic Kähler manifolds. As a by‐product, we obtain an improved gradient estimate of positive harmonic functions on Kähler manifolds and quaternionic Kähler manifolds under lower curvature bounds.
more » « less- Award ID(s):
- 1954264
- NSF-PAR ID:
- 10482259
- Publisher / Repository:
- Oxford University Press (OUP)
- Date Published:
- Journal Name:
- Journal of the London Mathematical Society
- Volume:
- 109
- Issue:
- 1
- ISSN:
- 0024-6107
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract We show the existence of complete negative Kähler–Einstein metric on Stein manifolds with holomorphic sectional curvature bounded from above by a negative constant. We prove that any Kähler metrics on such manifolds can be deformed to the complete negative Kähler–Einstein metric using the normalized Kähler–Ricci flow.more » « less
-
In this paper we establish a lower bound for the distance induced by the Kähler-Einstein metric on pseudoconvex domains with positive hyperconvexity index (e.g. positive Diederich-Fornæss index). A key step is proving an analog of the Hopf lemma for Riemannian manifolds with Ricci curvature bounded from below.more » « less
-
We develop Green’s function estimates for manifolds satisfying a weighted Poincaré inequality together with a compatible lower bound on the Ricci curvature. This estimate is then applied to establish existence and sharp estimates of solutions to the Poisson equation on such manifolds. As an application, a Liouville property for finite energy holomorphic functions is proven on a class of complete Kähler manifolds. Consequently, such Kähler manifolds must be connected at infinity.more » « less
-
Abstract In a previous paper [7], the first two authors classified complete Ricci-flat ALF Riemannian 4-manifolds that are toric and Hermitian, but non-Kähler. In this article, we consider general Ricci-flat metrics on these spaces that are close to a given such gravitational instanton with respect to a norm that imposes reasonable fall-off conditions at infinity. We prove that any such Ricci-flat perturbation is necessarily Hermitian and carries a bounded, non-trivial Killing vector field. With mild additional hypotheses, we are then able to show that the new Ricci-flat metric must actually be one of the known gravitational instantons classified in [7].