skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non‐destructive thickness measurement of optically scattering polymer films using image processing
Abstract We establish a sample‐ and data‐processing pipeline that allows for high‐throughput optical microscope measurement of porous films, provided they are sufficiently optically scattering. Here, self‐limiting electrospray deposition (SLED) is used to manufacture scattering films of different morphologies. This technique compensates for the scattering of the films through background subtraction of the reflection image with the transmission image. This process is implemented through a combination of an ImageJ and MATLAB data pipeline; the Canny edge‐detector is used as the image‐processing algorithm to identify the boundaries of the film. This process is verified against manually measured images; a comparative study between cross‐sectional scanning electron microscopy (where scattering effects are diminished) and optical microscopy also verifies that our optical microscopy technique can be used to consistently, non‐destructively measure film thickness regardless of film morphology. In addition, this technique can be used in combination with dense film measurements to measure film porosity.  more » « less
Award ID(s):
2019928 2019849
PAR ID:
10482262
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Engineering Reports
Volume:
6
Issue:
9
ISSN:
2577-8196
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photonic integrated circuits (PICs) are vital for developing affordable, high-performance optoelectronic devices that can be manufactured at an industrial scale, driving innovation and efficiency in various applications. Optical loss of modes in thin film waveguides and devices is a critical measure of their performance. Thin film growth, lithography, masking, and etching processes are imperfect processes that introduce significant sidewall and top-surface roughness and cause dominating optical losses in waveguides and photonic structures. This roughness, as perturbations couple light from guided to far-field radiation modes, leads to scattering losses that can be estimated from theoretical models. Typically, with UV-based lithography, sidewall roughness is significantly larger than wafer-top surface roughness. Atomic force microscopy (AFM) imaging measurement gives a 3D and high-resolution roughness profile, but the measurement is inconvenient, costly, and unscalable for large-scale PICs and at wafer-scale. Here, we evaluate the sidewall roughness profile based on 2D high-resolution scanning electron microscope (SEM) imaging. We characterized the loss on two homemade nitride and oxide films on 3-inch silicon wafers with 12 waveguide devices on each and correlated the scattering loss estimated from a 2D image-based sidewall profile and theoretical Payne model. The lowest loss of guided fundamental transverse electric (TE0) mode is found at 0.075 dB/cm at 633 nm across 24 devices, a record at visible wavelength. Our work shows 100% success (edge continuity span exceeding 95% of image width/height) in edge detection in image processing of all images to estimate autocorrelation function and optical mode loss. These demonstrations offer valuable insights into waveguide sidewall roughness and a comparison of experimental and 2D SEM image processing based loss estimations with applications in loss characterization at wafer-scale PICs. 
    more » « less
  2. The refractory metal iridium has many applications in high performance optical devices due to its high reflectivity into X-ray frequencies, low oxidation rate, and high melting point. Depositing Ir via magnetron sputtering produces high quality thin films, but the chamber pressure and sputter conditions can change Ir film microstructure on the nanoscale. Film microstructure is commonly examined through microscopy of film cross-sections, which is both a destructive characterization method and time consuming. In this work, we have utilized a non-destructive characterization technique, spectroscopic ellipsometry, to correlate the optical properties of the metal films with their structural morphologies, enabling large-scale inspection of optical components or the ability to customize the metal refractive index for the application at hand. The optical properties of Ir thin films deposited at chamber pressures from 10 mTorr to 25 mTorr are reported and compared to microscopy and resistivity results. The measurements were conducted with films deposited both on a bare wafer and on a titanium sublayer. 
    more » « less
  3. Graphene oxide (GO) films have a great potential for aerospace, electronics, and renewable energy applications due to their low cost and unique properties. For structural applications, they can achieve an exceptional combination of damping and stiffness. This study investigates the effect of packing density, reduction, and water removal on stiffness and damping of graphene oxide films. GO sheets dispersed in water are passed through a filter and deposited on a removable substrate. Through variations of the film fabrication process, films of both GO and reduced GO (rGO) are produced with varying levels of packing. Heat treatment is also used to remove the water in half of the films. The degree of packing is assessed through film density calculations. Microscopy as well as Raman and X-ray spectroscopy are used to measure the degree of packing while Dynamic Mechanical Analysis (DMA) is used to quantity mechanical damping and storage modulus of specimens in tension. Correlating mechanical properties to structure of films revealed new understanding of damping and stress transfer mechanisms in these materials. Optimal structures resulted in superior combinations of stiffness (18 GPa) and damping (0.14), potentially paving the way for using GO based films in advanced structural applications. 
    more » « less
  4. The development of functional chalcogenide optical phase change materials holds significant promise for advancing optics and photonics applications. Our comprehensive investigation into the solution processing of Sb2Se3 thin films presents a systematic approach from solvent exploration to substrate coating through drop-casting methods and heat treatments. By employing characterization techniques such as scanning electron microscopy, dynamic light scattering, energy-dispersive X-ray spectroscopy, Raman spectroscopy, and X-ray diffraction, we reveal crucial insights into the structural, compositional, and morphological properties of the films as well as demonstrated techniques for control over these features to ensure requisite optical quality. Our findings, compared with currently reported deposition techniques, highlight the potential of solution deposition as a route for scalable Sb2Se3 film processing. 
    more » « less
  5. Abstract This study investigates the presence of titanium oxynitride bonds in titanium dioxide (TiO2) thin films grown by atomic layer deposition (ALD) using tetrakis dimethyl amino titanium (TDMAT) and water at temperatures between 150 and 350 °C and its effect on the films’ optical and electrical properties. Compositional analysis using X‐ray photoelectron spectroscopy (XPS) reveals increased incorporation of oxynitride bonds as the process temperature increases. Furthermore, depth profile data demonstrates an increase in the abundance of this type of bonding from the surface to the bulk of the films. Ultraviolet‐visible spectroscopy (UV‐vis) measurements correlate increased visible light absorption for the films with elevated oxynitride incorporation. The optical constants (n, k) of the films show a pronounced dependence on the process temperature that is mirrored in the film conductivity. The detection of oxynitride bonding suggests a secondary reaction pathway in this well‐established ALD process chemistry, that may impact film properties. These findings indicate that the choice of process chemistry and conditions can be used to optimize film properties for optoelectronic applications. 
    more » « less