skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Certified Control-Oriented Learning: A Coprime Factorization Approach
This paper considers the problem of learning models to be used for controller design. Using a simple example, it argues that in this scenario the objective should reflect the closed-loop, rather than open-loop distance between the learned model and the actual plant, a task that can be accomplished by using a gap metric motivated approach. This is particularly important when identifying open-loop unstable plants, since typically in this case the open-loop distance is unbounded. In this context, the paper proposes a convex optimization approach to learn its coprime factors. This approach has a dual advantage: (1) it can easily handle open-loop unstable plants, since the coprime factors are stable, and (2) it is "self certified", since a simple norm computation on the learned factors indicates whether or not a controller designed based on these factors will stabilize the actual (unknown) plant. If this test fails, it indicates that further learning is needed.  more » « less
Award ID(s):
1808381
PAR ID:
10482326
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-6761-2
Page Range / eLocation ID:
6012 to 6017
Format(s):
Medium: X
Location:
Cancun, Mexico
Sponsoring Org:
National Science Foundation
More Like this
  1. Lawrence, N (Ed.)
    This paper addresses the end-to-end sample complexity bound for learning in closed loop the state estimator-based robust H2 controller for an unknown (possibly unstable) Linear Time Invariant (LTI) system, when given a fixed state-feedback gain. We build on the results from Ding et al. (1994) to bridge the gap between the parameterization of all state-estimators and the celebrated Youla parameterization. Refitting the expression of the relevant closed loop allows for the optimal linear observer problem given a fixed state feedback gain to be recast as a convex problem in the Youla parameter. The robust synthesis procedure is performed by considering bounded additive model uncertainty on the coprime factors of the plant, such that a min-max optimization problem is formulated for the robust H2 controller via an observer approach. The closed-loop identification scheme follows Zhang et al. (2021), where the nominal model of the true plant is identified by constructing a Hankel-like matrix from a single time-series of noisy, finite length input-output data by using the ordinary least squares algorithm from Sarkar et al. (2020). Finally, a H∞ bound on the estimated model error is provided, as the robust synthesis procedure requires bounded additive uncertainty on the coprime factors of the model. Reference Zhang et al. (2022b) is the extended version of this paper. 
    more » « less
  2. This paper addresses the end-to-end sample complexity bound for learning the H2 optimal controller (the Linear Quadratic Gaussian (LQG) problem) with unknown dynamics, for potentially unstable Linear Time Invariant (LTI) systems. The robust LQG synthesis procedure is performed by considering bounded additive model uncertainty on the coprime factors of the plant. The closed-loopi dentification of the nominal model of the true plant is performed by constructing a Hankel-like matrix from a single time-series of noisy finite length input-output data, using the ordinary least squares algorithm from Sarkar and Rakhlin (2019). Next, an H∞ bound on the estimated model error is provided and the robust controller is designed via convex optimization, much in the spirit of Mania et al. (2019) and Zheng et al. (2020b), while allowing for bounded additive uncertainty on the coprime factors of the model. Our conclusions are consistent with previous results on learning the LQG and LQR controllers. 
    more » « less
  3. Online convex optimization (OCO) is a powerful tool for learning sequential data, making it ideal for high precision control applications where the disturbances are arbitrary and unknown in advance. However, the ability of OCO-based controllers to accurately learn the disturbance while maintaining closed-loop stability relies on having an accurate model of the plant. This paper studies the performance of OCO-based controllers for linear time-invariant (LTI) systems subject to disturbance and model uncertainty. The model uncertainty can cause the closed-loop to become unstable. We provide a sufficient condition for robust stability based on the small gain theorem. This condition is easily incorporated as an on-line constraint in the OCO controller. Finally, we verify via numerical simulations that imposing the robust stability condition on the OCO controller ensures closed-loop stability. 
    more » « less
  4. null (Ed.)
    One of the key challenges arising when compilers vectorize loops for today’s SIMD-compatible architectures is to decide if vectorization or interleaving is beneficial. Then, the compiler has to determine the number of instructions to pack together and the interleaving level (stride). Compilers are designed today to use fixed-cost models that are based on heuristics to make vectorization decisions on loops. However, these models are unable to capture the data dependency, the computation graph, or the organization of instructions. Alternatively, software engineers often hand-write the vectorization factors of every loop. This, however, places a huge burden on them, since it requires prior experience and significantly increases the development time. In this work, we explore a novel approach for handling loop vectorization and propose an end-to-end solution using deep reinforcement learning (RL). We conjecture that deep RL can capture different instructions, dependencies, and data structures to enable learning a sophisticated model that can better predict the actual performance cost and determine the optimal vectorization factors. We develop an end-to-end framework, from code to vectorization, that integrates deep RL in the LLVM compiler. Our proposed framework takes benchmark codes as input and extracts the loop codes. These loop codes are then fed to a loop embedding generator that learns an embedding for these loops. Finally, the learned embeddings are used as input to a Deep RL agent, which dynamically determines the vectorization factors for all the loops. We further extend our framework to support random search, decision trees, supervised neural networks, and nearest-neighbor search. We evaluate our approaches against the currently used LLVM vectorizer and loop polyhedral optimization techniques. Our experiments show 1.29×−4.73× performance speedup compared to baseline and only 3% worse than the brute-force search on a wide range of benchmarks. 
    more » « less
  5. The goal of this paper is to design a stabilizing feedback controller of roll instability near stall. This problem becomes immensely challenging since the aileron sensitivity is vanishes and even reversed sign at stall. This challenge is overcome by employing the recently developed Lie Bracket Roll Augmentation (LIBRA) mechanism. In this mechanism,the nonlinear dynamics of the airplane near stall is exploited to achieve a rolling motion that is independent of the aileron sensitivity. Rather, it depends on the variation of the aileron sensitivity with the angle of attack which is non-zero at stall. The open loop characteristics of the LIBRA mechanism have been studied previously. The contribution of the current manuscript lies in using the LIBRA mechanism in a feedback fashion to stabilize the roll unstable dynamics near stall using a stabilization scheme based on motion planning techniques for highly oscillatory inputs. 
    more » « less