Abstract Some bird species fly inverted, or whiffle, to lose altitude. Inverted flight twists the primary flight feathers, creating gaps along the wing’s trailing edge and decreasing lift. It is speculated that feather rotation-inspired gaps could be used as control surfaces on uncrewed aerial vehicles (UAVs). When implemented on one semi-span of a UAV wing, the gaps produce roll due to the asymmetric lift distribution. However, the understanding of the fluid mechanics and actuation requirements of this novel gapped wing were rudimentary. Here, we use a commercial computational fluid dynamics solver to model a gapped wing, compare its analytically estimated work requirements to an aileron, and identify the impacts of key aerodynamic mechanisms. An experimental validation shows that the results agree well with previous findings. We also find that the gaps re-energize the boundary layer over the suction side of the trailing edge, delaying stall of the gapped wing. Further, the gaps produce vortices distributed along the wingspan. This vortex behavior creates a beneficial lift distribution that produces comparable roll and less yaw than the aileron. The gap vortices also inform the change in the control surface’s roll effectiveness across angle of attack. Finally, the flow within a gap recirculates and creates negative pressure coefficients on the majority of the gap face. The result is a suction force on the gap face that increases with angle of attack and requires work to hold the gaps open. Overall, the gapped wing requires higher actuation work than the aileron at low rolling moment coefficients. However, above rolling moment coefficients of 0.0182, the gapped wing requires less work and ultimately produces a higher maximum rolling moment coefficient. Despite the variable control effectiveness, the data suggest that the gapped wing could be a useful roll control surface for energy-constrained UAVs at high lift coefficients.
more »
« less
Feedback Oscillatory Control of Roll Instability During Stall Using the LIBRA Mechanism
The goal of this paper is to design a stabilizing feedback controller of roll instability near stall. This problem becomes immensely challenging since the aileron sensitivity is vanishes and even reversed sign at stall. This challenge is overcome by employing the recently developed Lie Bracket Roll Augmentation (LIBRA) mechanism. In this mechanism,the nonlinear dynamics of the airplane near stall is exploited to achieve a rolling motion that is independent of the aileron sensitivity. Rather, it depends on the variation of the aileron sensitivity with the angle of attack which is non-zero at stall. The open loop characteristics of the LIBRA mechanism have been studied previously. The contribution of the current manuscript lies in using the LIBRA mechanism in a feedback fashion to stabilize the roll unstable dynamics near stall using a stabilization scheme based on motion planning techniques for highly oscillatory inputs.
more »
« less
- Award ID(s):
- 1846308
- PAR ID:
- 10408679
- Date Published:
- Journal Name:
- AIAA SciTech
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Results of a previous aerodynamics study conducted over a wing that exhibits the Prandtl Bell Spanload were implemented into a simulation environment with the intent of studying unique flight characteristics that are theorized to be presented by this spanload. However, early simulations over the dynamics show that the yawing moment due to roll rate is of higher effect than the yaw moment due to aileron deflection angle. This over-prediction of the roll-yaw coupling term has been called into question. A new method is to be tested, which implements a compact vortex-lattice (CVLM) formulation, to show the difference between the flight dynamics predicted by this new method and the stability derivative method currently in use. The analysis utilizes two initial conditions to test the differences as the dynamics propagate through time. The first, a large initial bank angle, leads to the stabiltiy derivative method diverging while the CVLM results show this to not be the case. The second condition, a wind-field representative of a stable nocturnal boundary layer over the ground, leads to much more agreement between methods before divergence occurs due to a velocity higher than that of the stability derivative linearization point. It is then agreed that, since CVLM cannot predict stall effects and other nonlinear flight regions, a hybrid approach is proposed that takes advantage of the roll-yaw coupling prediction of the CVLM and the range of condition available to the stability derivative method.more » « less
-
Abstract Some bird species exhibit a flight behavior known as whiffling, in which the bird flies upside-down during landing, predator evasion, or courtship displays. Flying inverted causes the flight feathers to twist, creating gaps in the wing’s trailing edge. It has been suggested that these gaps decrease lift at a potentially lower energy cost, enabling the bird to maneuver and rapidly descend. Thus, avian whiffling has parallels to an uncrewed aerial vehicle (UAV) using spoilers for rapid descent and ailerons for roll control. However, while whiffling has been previously described in the biological literature, it has yet to directly inspire aerodynamic design. In the current research, we investigated if gaps in a wing’s trailing edge, similar to those caused by feather rotation during whiffling, could provide an effective mechanism for UAV control, particularly rapid descent and banking. To address this question, we performed a wind tunnel test of 3D printed wings with a varying amount of trailing edge gaps and compared the lift and rolling moment coefficients generated by the gapped wings to a traditional spoiler and aileron. Next, we used an analytical analysis to estimate the force and work required to actuate gaps, spoiler, and aileron. Our results showed that gapped wings did not reduce lift as much as a spoiler and required more work. However, we found that at high angles of attack, the gapped wings produced rolling moment coefficients equivalent to upwards aileron deflections of up to 32.7° while requiring substantially less actuation force and work. Thus, while the gapped wings did not provide a noticeable benefit over spoilers for rapid descent, a whiffling-inspired control surface could provide an effective alternative to ailerons for roll control. These findings suggest a novel control mechanism that may be advantageous for small fixed-wing UAVs, particularly energy-constrained aircraft.more » « less
-
Geometric control theory is the application of differential geometry to the study of nonlinear dynamical systems. This control theory permits an analytical study of nonlinear interactions between control inputs, such as symmetry breaking or force and motion generation in unactuated directions. This paper studies the unsteady aerodynamics of a harmonically pitching–plunging airfoil in a geometric control framework. The problem is formulated using the Beddoes–Leishman model, a semi-empirical state space model that characterizes the unsteady lift and drag forces of a two-dimensional airfoil. In combination with the averaging theorem, the application of a geometric control formulation to the problem enables an analytical study of the nonlinear dynamics behind the unsteady aerodynamic forces. The results show lift enhancement when oscillating near stall and thrust generation in the post-stall flight regime, with the magnitude of these force generation mechanisms depending on the parameters of motion. These findings demonstrate the potential of geometric control theory as a heuristic tool for the identification and discovery of unconventional phenomena in unsteady flows.more » « less
-
Large-eddy simulations (LES) over a NACA0018 airfoil at a low Reynolds number (Re = 50, 000) fluid flow are performed to investigate the effect of active flow control at different angles of attack (AOA = 10 to 20 degrees) using low amplitude surface morphing backward (opposite to the airfoil’s forward motion) traveling wave actuation on the suction (upper) side of the airfoil. The curvilinear immersed boundary (CURVIB) method is used to handle the moving surface of the airfoil. While our previous simulations indicated the effectiveness of traveling waves at near stall angle of attack (AOA = 15 degrees), the effectiveness of these waves at post-stall AOA such as AOA = 20 degrees is not understood. The actuation amplitude of the surface morphing traveling waves is a* = 0.001 (a* = a/L, a: amplitude, L: chord length of the airfoil), and the range of the reduced frequency (f* = fL/U, f: frequency, U: free stream velocity) is from f* = 4 to 16. The results of the simulations at the post-stall angle of attack (AOA = 20 degrees) show that the lift coefficient, CL, increases by about 23%, and the drag coefficient, CD, decreases by about 54% within the frequency range from f* = 8 to f* = 10.more » « less
An official website of the United States government

