This paper addresses the end-to-end sample complexity bound for learning the H2 optimal controller (the Linear Quadratic Gaussian (LQG) problem) with unknown dynamics, for potentially unstable Linear Time Invariant (LTI) systems. The robust LQG synthesis procedure is performed by considering bounded additive model uncertainty on the coprime factors of the plant. The closed-loopi dentification of the nominal model of the true plant is performed by constructing a Hankel-like matrix from a single time-series of noisy finite length input-output data, using the ordinary least squares algorithm from Sarkar and Rakhlin (2019). Next, an H∞ bound on the estimated model error is provided and the robust controller is designed via convex optimization, much in the spirit of Mania et al. (2019) and Zheng et al. (2020b), while allowing for bounded additive uncertainty on the coprime factors of the model. Our conclusions are consistent with previous results on learning the LQG and LQR controllers. 
                        more » 
                        « less   
                    
                            
                            Sample Complexity Bound for Evaluating the Robust Observer’s Performance under Coprime Factors Uncertainty
                        
                    
    
            This paper addresses the end-to-end sample complexity bound for learning in closed loop the state estimator-based robust H2 controller for an unknown (possibly unstable) Linear Time Invariant (LTI) system, when given a fixed state-feedback gain. We build on the results from Ding et al. (1994) to bridge the gap between the parameterization of all state-estimators and the celebrated Youla parameterization. Refitting the expression of the relevant closed loop allows for the optimal linear observer problem given a fixed state feedback gain to be recast as a convex problem in the Youla parameter. The robust synthesis procedure is performed by considering bounded additive model uncertainty on the coprime factors of the plant, such that a min-max optimization problem is formulated for the robust H2 controller via an observer approach. The closed-loop identification scheme follows Zhang et al. (2021), where the nominal model of the true plant is identified by constructing a Hankel-like matrix from a single time-series of noisy, finite length input-output data by using the ordinary least squares algorithm from Sarkar et al. (2020). Finally, a H∞ bound on the estimated model error is provided, as the robust synthesis procedure requires bounded additive uncertainty on the coprime factors of the model. Reference Zhang et al. (2022b) is the extended version of this paper. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1653756
- PAR ID:
- 10521589
- Editor(s):
- Lawrence, N
- Publisher / Repository:
- Proceedings of Machine Learning Research
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- ISSN:
- 2640-3498
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This article addresses the quadrotors’ safety-critical landing control problem with external uncertainties and collision avoidance. A geometrically robust hierarchical control strategy is proposed for an underactuated quadrotor, which consists of a slow outer loop controlling the position and a fast inner loop regulating the attitude. First, an estimation error quantified (EEQ) observer is developed to identify and compensate for the target’s linear acceleration and the translational disturbances, whose estimation error has a nonnegative upper bound. Furthermore, an outer-loop controller is designed by embedding the EEQ observer and control barrier functions (CBFs), in which the negative effects of external uncertainties, collision avoidance, and input saturation are thoroughly considered and effectively attenuated. For the inner-loop subsystem, a geometric controller with a robust integral of the sign of the error (RISE) control structure is developed to achieve disturbances rejection and asymptotic attitude tracking. Based on Lyapunov techniques and the theory of cascade systems, it is rigorously proven that the closed-loop system is uniformly ultimately bounded. Finally, the effectiveness of the proposed control strategy is demonstrated through numerical simulations and hardware experiments.more » « less
- 
            Online convex optimization (OCO) is a powerful tool for learning sequential data, making it ideal for high precision control applications where the disturbances are arbitrary and unknown in advance. However, the ability of OCO-based controllers to accurately learn the disturbance while maintaining closed-loop stability relies on having an accurate model of the plant. This paper studies the performance of OCO-based controllers for linear time-invariant (LTI) systems subject to disturbance and model uncertainty. The model uncertainty can cause the closed-loop to become unstable. We provide a sufficient condition for robust stability based on the small gain theorem. This condition is easily incorporated as an on-line constraint in the OCO controller. Finally, we verify via numerical simulations that imposing the robust stability condition on the OCO controller ensures closed-loop stability.more » « less
- 
            This paper considers the problem of learning models to be used for controller design. Using a simple example, it argues that in this scenario the objective should reflect the closed-loop, rather than open-loop distance between the learned model and the actual plant, a task that can be accomplished by using a gap metric motivated approach. This is particularly important when identifying open-loop unstable plants, since typically in this case the open-loop distance is unbounded. In this context, the paper proposes a convex optimization approach to learn its coprime factors. This approach has a dual advantage: (1) it can easily handle open-loop unstable plants, since the coprime factors are stable, and (2) it is "self certified", since a simple norm computation on the learned factors indicates whether or not a controller designed based on these factors will stabilize the actual (unknown) plant. If this test fails, it indicates that further learning is needed.more » « less
- 
            We propose an automatic synthesis technique to generate provably correct controllers of stochastic linear dynamical systems for Signal Temporal Logic (STL) specifications. While formal synthesis problems can be directly formulated as exists-forall constraints, the quantifier alternation restricts the scalability of such an approach. We use the duality between a system and its proof of correctness to partially alleviate this challenge. We decompose the controller synthesis into two subproblems, each addressing orthogonal concerns - stabilization with respect to the noise, and meeting the STL specification. The overall controller is a nested controller comprising of the feedback controller for noise cancellation and an open loop controller for STL satisfaction. The correct-by-construction compositional synthesis of this nested controller relies on using the guarantees of the feedback controller instead of the controller itself. We use a linear feedback controller as the stabilizing controller for linear systems with bounded additive noise and over-approximate its ellipsoid stability guarantee with a polytope. We then use this over-approximation to formulate a mixed-integer linear programming (MILP) problem to synthesize an open-loop controller that satisfies STL specifications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    