Abstract The superconducting state and mechanism are among the least understood phenomena in twisted graphene systems. Recent tunneling experiments indicate a transition between nodal and gapped pairing with electron filling, which is not naturally understood within current theory. We demonstrate that the coexistence of superconductivity and flavor polarization leads to pairing channels that are guaranteed by symmetry to be entirely band-off-diagonal, with a variety of consequences: most notably, the pairing invariant under all symmetries can have Bogoliubov Fermi surfaces in the superconducting state with protected nodal lines, or may be fully gapped, depending on parameters, and the band-off-diagonal chiralp-wave state exhibits transitions between gapped and nodal regions upon varying the doping. We demonstrate that band-off-diagonal pairing can be the leading state when only phonons are considered, and is also uniquely favored by fluctuations of a time-reversal-symmetric intervalley coherent order motivated by recent experiments. Consequently, band-off-diagonal superconductivity allows for the reconciliation of several key experimental observations in graphene moiré systems.
more »
« less
Polar hairs of mixed-parity nodal superconductors in Rarita-Schwinger-Weyl metals
Linearly dispersing Rarita-Schwinger-Weyl (RSW) fermions featuring two Fermi velocities are the key constituents of itinerant spin-3/2 quantum materials. When doped, RSW metals sustain two Fermi surfaces (FSs), around which one fully gapped s wave and five mixed-parity local pairings can take place. The intraband components of four mixed-parity pairings support point nodes at the poles of two FSs, only around which long-lived quasiparticles live. For weak (strong) pairing amplitudes (Δ), gapless north and south poles belonging to the same (different) FS(s) get connected by polar hairs, one-dimensional line nodes occupying the region between two FSs. The remaining one, by contrast, supports four nodal rings in between two FSs, symmetrically placed about their equators, but only when Δ is small. For large Δ, this paired state becomes fully gapped. The transition temperature and pairing amplitudes follow the BCS scaling. We explicitly showcase these outcomes for a rotationally symmetric RSW metal and contrast our findings when the system possesses an enlarged Lorentz symmetry and with those in spin-3/2 Luttinger materials.
more »
« less
- Award ID(s):
- 2238679
- PAR ID:
- 10482443
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 107
- Issue:
- 18
- ISSN:
- 2469-9950
- Page Range / eLocation ID:
- L180502
- Subject(s) / Keyword(s):
- Superconductivity, Unconventional superconductors, Weyl semimetal, BCS theory, Mean field theory
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This Letter presents the first lattice QCD computation of the coupled channel πΣ−¯KN scattering amplitudes at energies near 1405 MeV. These amplitudes contain the resonance Λ(1405) with strangeness S=−1 and isospin, spin, and parity quantum numbers I(JP)=0(1/2−). However, whether there is a single resonance or two nearby resonance poles in this region is controversial theoretically and experimentally. Using single-baryon and meson-baryon operators to extract the finite-volume stationary-state energies to obtain the scattering amplitudes at slightly unphysical quark masses corresponding to mπ≈200 MeV and mK≈487 MeV, this study finds the amplitudes exhibit a virtual bound state below the πΣ threshold in addition to the established resonance pole just below the ¯KN threshold. Several parametrizations of the two-channel K matrix are employed to fit the lattice QCD results, all of which support the two-pole picture suggested by SU(3) chiral symmetry and unitarity.more » « less
-
Under flavor SU(3) symmetry (SU(3)_F), the final-state particles in B → PPP decays (P is a pseudoscalar meson) are treated as identical, and the PPP must be in a fully-symmetric(FS) state, a fully-antisymmetric (FA) state, or in one of four mixed states. In this paper, we present the formalism for the FA states. We write the amplitudes for the 22 B → PPP decays that can be in an FA state in terms of both the SU(3)_F reduced matrix elements and diagrams. This shows the equivalence of diagrams and SU(3)_F. We also give 15 relations among the amplitudes in the SU(3)_F limit as well as the additional four that appear when the diagrams E/A/PA are neglected. We present sets of B → PPP decays that can be used to extract γ using the FA amplitudes. The value(s) of γ found in this way can be compared with the value(s) found using the FS states.more » « less
-
Electron-doped cuprates consistently exhibit strong antiferromagnetic correlations, leading to the prevalent belief that antiferromagnetic spin fluctuations mediate Cooper pairing in these unconventional superconductors. However, early investigations showed that although antiferromagnetic spin fluctuations create the largest pseudogap at hot spots in momentum space, the superconducting gap is also maximized at these locations. This presented a paradox for spin-fluctuation-mediated pairing: Cooper pairing is strongest at momenta where the normal-state low-energy spectral weight is most suppressed. Here we investigate this paradox and find evidence that a gossamer—meaning very faint—Fermi surface can provide an explanation for these observations. We study Nd2–xCexCuO4 using angle-resolved photoemission spectroscopy and directly observe the Bogoliubov quasiparticles. First, we resolve the previously observed reconstructed main band and the states gapped by the antiferromagnetic pseudogap around the hot spots. Within the antiferromagnetic pseudogap, we also observe gossamer states with distinct dispersion, from which coherence peaks of Bogoliubov quasiparticles emerge below the superconducting critical temperature. Moreover, the direct observation of a Bogoliubov quasiparticle permits an accurate determination of the superconducting gap, yielding a maximum value an order of magnitude smaller than the pseudogap, establishing the distinct nature of these two gaps. We propose that orientation fluctuations in the antiferromagnetic order parameter are responsible for the gossamer states.more » « less
-
Abstract We studied the magnetic excitations in the quasi-one-dimensional (q-1D) ladder subsystem of Sr 14−x Ca x Cu 24 O 41 (SCCO) using Cu L 3 -edge resonant inelastic X-ray scattering (RIXS). By comparing momentum-resolved RIXS spectra with high ( x = 12.2) and without ( x = 0) Ca content, we track the evolution of the magnetic excitations from collective two-triplon (2 T) excitations ( x = 0) to weakly-dispersive gapped modes at an energy of 280 meV ( x = 12.2). Density matrix renormalization group (DMRG) calculations of the RIXS response in the doped ladders suggest that the flat magnetic dispersion and damped excitation profile observed at x = 12.2 originates from enhanced hole localization. This interpretation is supported by polarization-dependent RIXS measurements, where we disentangle the spin-conserving Δ S = 0 scattering from the predominant Δ S = 1 spin-flip signal in the RIXS spectra. The results show that the low-energy weight in the Δ S = 0 channel is depleted when Sr is replaced by Ca, consistent with a reduced carrier mobility. Our results demonstrate that off-ladder impurities can affect both the low-energy magnetic excitations and superconducting correlations in the CuO 4 plaquettes. Finally, our study characterizes the magnetic and charge fluctuations in the phase from which superconductivity emerges in SCCO at elevated pressures.more » « less
An official website of the United States government

