skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Long‐time asymptotics and the radiation condition with time‐periodic boundary conditions for linear evolution equations on the half‐line and experiment
Abstract The asymptotic Dirichlet‐to‐Neumann (D‐N) map is constructed for a class of scalar, constant coefficient, linear, third‐order, dispersive equations with asymptotically time/periodic Dirichlet boundary data and zero initial data on the half‐line, modeling a wavemaker acting upon an initially quiescent medium. The large timetasymptotics for the special cases of the linear Korteweg‐de Vries and linear Benjamin–Bona–Mahony (BBM) equations are obtained. The D‐N map is proven to be unique if and only if the radiation condition that selects the unique wave number branch of the dispersion relation for a sinusoidal, time‐dependent boundary condition holds: (i) for frequencies in a finite interval, the wave number is real and corresponds to positive group velocity, and (ii) for frequencies outside the interval, the wave number is complex with positive imaginary part. For fixed spatial locationx, the corresponding asymptotic solution is (i) a traveling wave or (ii) a spatially decaying, time‐periodic wave. The linearized BBM asymptotics are found to quantitatively agree with viscous core‐annular fluid experiments.  more » « less
Award ID(s):
2306319 2206270
PAR ID:
10482544
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Studies in Applied Mathematics
ISSN:
0022-2526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we study the superconvergence of the semi-discrete discontinuous Galerkin (DG) method for linear hyperbolic equations in one spatial dimension. The asymptotic errors in cell averages, downwind point values, and the postprocessed solution are derived for the initial discretization by Gaussian projection (for periodic boundary condition) or Cao projection Cao et al. (SIAM J. Numer. Anal.5, 2555–2573 (2014)) (for Dirichlet boundary condition). We proved that the error constant in the superconvergence of order$$2k+1$$ 2 k + 1 for DG methods based on upwind-biased fluxes depends on the parity of the orderk. The asymptotic errors are demonstrated by various numerical experiments for scalar and vector hyperbolic equations. 
    more » « less
  2. Tobias Ekholm (Ed.)
    We prove nonlinear asymptotic stability of a large class of monotonic shear flows among solutions of the 2D Euler equations in the channel $$\mathbb{T}\times[0,1]$$. More precisely, we consider shear flows $(b(y),0)$ given by a function $$b$$ which is Gevrey smooth, strictly increasing, and linear outside a compact subset of the interval $(0,1)$ (to avoid boundary contributions which are incompatible with inviscid damping). We also assume that the associated linearized operator satisfies a suitable spectral condition, which is needed to prove linear inviscid damping. Under these assumptions, we show that if $$u$$ is a solution which is a small and Gevrey smooth perturbation of such a shear flow $(b(y),0)$ at time $t=0$, then the velocity field $$u$$ converges strongly to a nearby shear flow as the time goes to infinity. This is the first nonlinear asymptotic stability result for Euler equations around general steady solutions for which the linearized flow cannot be explicitly solved. 
    more » « less
  3. Consider the scattering of a time-harmonic elastic plane wave by a periodic rigid surface. The elastic wave propagation is governed by the two-dimensional Navier equation. Based on a Dirichlet-to-Neumann (DtN) map, a transparent boundary condition (TBC) is introduced to reduce the scattering problem into a boundary value problem in a bounded domain. By using the finite element method, the discrete problem is considered, where the TBC is replaced by the truncated DtN map. A new duality argument is developed to derive the a posteriori error estimate, which contains both the finite element approximation error and the DtN truncation error. An a posteriori error estimate based adaptive finite element algorithm is developed to solve the elastic surface scattering problem. Numerical experiments are presented to demonstrate the effectiveness of the proposed method. 
    more » « less
  4. We study a class of second-order degenerate linear parabolic equations in divergence form in ( − ∞ , T ) × R + d (-\infty , T) \times {\mathbb {R}}^d_+ with homogeneous Dirichlet boundary condition on ( − ∞ , T ) × ∂ R + d (-\infty , T) \times \partial {\mathbb {R}}^d_+ , where R + d = { x ∈ R d : x d > 0 } {\mathbb {R}}^d_+ = \{x \in {\mathbb {R}}^d: x_d>0\} and T ∈ ( − ∞ , ∞ ] T\in {(-\infty , \infty ]} is given. The coefficient matrices of the equations are the product of μ ( x d ) \mu (x_d) and bounded uniformly elliptic matrices, where μ ( x d ) \mu (x_d) behaves like x d α x_d^\alpha for some given α ∈ ( 0 , 2 ) \alpha \in (0,2) , which are degenerate on the boundary { x d = 0 } \{x_d=0\} of the domain. Our main motivation comes from the analysis of degenerate viscous Hamilton-Jacobi equations. Under a partially VMO assumption on the coefficients, we obtain the well-posedness and regularity of solutions in weighted Sobolev spaces. Our results can be readily extended to systems. 
    more » « less
  5. Abstract We study the (characteristic) Cauchy problem for the Maxwell‐Bloch equations of light‐matter interaction via asymptotics, under assumptions that prevent the generation of solitons. Our analysis clarifies some features of the sense in which physically‐motivated initial‐boundary conditions are satisfied. In particular, we present a proper Riemann‐Hilbert problem that generates the uniquecausalsolution to the Cauchy problem, that is, the solution vanishes outside of the light cone. Inside the light cone, we relate the leading‐order asymptotics to self‐similar solutions that satisfy a system of ordinary differential equations related to the Painlevé‐III (PIII) equation. We identify these solutions and show that they are related to a family of PIII solutions recently discovered in connection with several limiting processes involving the focusing nonlinear Schrödinger equation. We fully explain a resulting boundary layer phenomenon in which, even for smooth initial data (an incident pulse), the solution makes a sudden transition over an infinitesimally small propagation distance. At a formal level, this phenomenon has been described by other authors in terms of the PIII self‐similar solutions. We make this observation precise and for the first time we relate the PIII self‐similar solutions to the Cauchy problem. Our analysis of the asymptotic behavior satisfied by the optical field and medium density matrix reveals slow decay of the optical field in one direction that is actually inconsistent with the simplest version of scattering theory. Our results identify a precise generic condition on an optical pulse incident on an initially‐unstable medium sufficient for the pulse to stimulate the decay of the medium to its stable state. 
    more » « less