The Green Bank Telescope Diffuse Ionized Gas Survey (GDIGS) traces ionized gas in the Galactic midplane by observing radio recombination line (RRL) emission from 4 to 8 GHz. The nominal survey zone is 32.°3 >
The neighborhood of the Galactic black hole boasts a plethora of extended interstellar gas and dust features, as well as populations of compact (unresolved or marginally resolved) features such as the G objects. Most are well manifested in the infrared. To disentangle and characterize the infrared structure of the extended features and identify compact sources, we used 3.8
- PAR ID:
- 10483055
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 167
- Issue:
- 1
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 41
- Size(s):
- Article No. 41
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ℓ > −5°, ∣b ∣ < 0.°5. Here, we analyze GDIGS Hnα ionized gas emission toward discrete sources. Using GDIGS data, we identify the velocity of 35 Hii regions that have multiple detected RRL velocity components. We identify and characterize RRL emission from 88 Hii regions that previously lacked measured ionized gas velocities. We also identify and characterize RRL emission from eight locations that appear to be previously unidentified Hii regions and 30 locations of RRL emission that do not appear to be Hii regions based on their lack of mid-infrared emission. This latter group may be a compact component of the Galactic Diffuse Ionized Gas. There are an additional 10 discrete sources that have anomalously high RRL velocities for their locations in the Galactic plane. We compare these objects’ RRL data to13CO, Hi, and mid-infrared data, and find that these sources do not have the expected 24μ m emission characteristic of Hii regions. Based on this comparison we do not think these objects are Hii regions, but we are unable to classify them as a known type of object. -
Abstract We present results from the James Webb Space Telescope Director’s Discretionary Time Early Release Science program 1328 targeting the nearby, luminous infrared galaxy, VV 114. We use the MIRI and NIRSpec instruments to obtain integral-field spectroscopy of the heavily obscured eastern nucleus (V114E) and surrounding regions. The spatially resolved, high-resolution spectra reveal the physical conditions in the gas and dust over a projected area of 2–3 kpc that includes the two brightest IR sources, the NE and SW cores. Our observations show for the first time spectroscopic evidence that the SW core hosts an active galactic nucleus as evidenced by its very low 6.2
μ m and 3.3μ m polycyclic aromatic hydrocarbon equivalent widths (0.12 and 0.017μ m, respectively) and mid- and near-IR colors. Our observations of the NE core show signs of deeply embedded star formation including absorption features due to aliphatic hydrocarbons, large quantities of amorphous silicates, as well as HCN due to cool gas along the line of sight. We detect elevated [Feii ]/Pfα consistent with extended shocks coincident with enhanced emission from warm H2, far from the IR-bright cores and clumps. We also identify broadening and multiple kinematic components in both H2and fine structure lines caused by outflows and previously identified tidal features. -
Abstract We present James Webb Space Telescope (JWST) imaging of NGC 7469 with the Near-Infrared Camera and the Mid-InfraRed Instrument. NGC 7469 is a nearby, z = 0.01627, luminous infrared galaxy that hosts both a Seyfert Type-1.5 nucleus and a circumnuclear starburst ring with a radius of ∼0.5 kpc. The new near-infrared (NIR) JWST imaging reveals 66 star-forming regions, 37 of which were not detected by Hubble Space Telescope (HST) observations. Twenty-eight of the 37 sources have very red NIR colors that indicate obscurations up to A v ∼ 7 and a contribution of at least 25% from hot dust emission to the 4.4 μ m band. Their NIR colors are also consistent with young (<5 Myr) stellar populations and more than half of them are coincident with the mid-infrared (MIR) emission peaks. These younger, dusty star-forming regions account for ∼6% and ∼17% of the total 1.5 and 4.4 μ m luminosity of the starburst ring, respectively. Thanks to JWST, we find a significant number of young dusty sources that were previously unseen due to dust extinction. The newly identified 28 young sources are a significant increase compared to the number of HST-detected young sources (4–5). This makes the total percentage of the young population rise from ∼15% to 48%. These results illustrate the effectiveness of JWST in identifying and characterizing previously hidden star formation in the densest star-forming environments around active galactic nuclei (AGN).more » « less
-
Abstract In this work, we constrain the star-forming properties of all possible sites of incipient high-mass star formation in the Milky Way’s Galactic Center. We identify dense structures using the CMZoom 1.3 mm dust continuum catalog of objects with typical radii of ∼0.1 pc, and measure their association with tracers of high-mass star formation. We incorporate compact emission at 8, 21, 24, 25, and 70
μ m from the Midcourse Space Experiment, Spitzer, Herschel, and SOFIA, cataloged young stellar objects, and water and methanol masers to characterize each source. We find an incipient star formation rate (SFR) for the Central Molecular Zone (CMZ) of ∼0.08M ⊙yr−1over the next few 105yr. We calculate upper and lower limits on the CMZ’s incipient SFR of ∼0.45 and ∼0.05M ⊙yr−1,respectively, spanning roughly equal to and several times greater than other estimates of CMZ’s recent SFR. Despite substantial uncertainties, our results suggest the incipient SFR in the CMZ may be higher than previously estimated. We find that the prevalence of star formation tracers does not correlate with source volume density, but instead ≳75% of high-mass star formation is found in regions above a column density ratio (N SMA/N Herschel) of ∼1.5. Finally, we highlight the detection ofatoll sources , a reoccurring morphology of cold dust encircling evolved infrared sources, possibly representing Hii regions in the process of destroying their envelopes. -
Abstract We use PHANGS–James Webb Space Telescope (JWST) data to identify and classify 1271 compact 21
μ m sources in four nearby galaxies using MIRI F2100W data. We identify sources using a dendrogram-based algorithm, and we measure the background-subtracted flux densities for JWST bands from 2 to 21μ m. Using the spectral energy distribution (SED) in JWST and HST bands plus ALMA and MUSE/VLT observations, we classify the sources by eye. Then we use this classification to define regions in color–color space and so establish a quantitative framework for classifying sources. We identify 1085 sources as belonging to the ISM of the target galaxies with the remainder being dusty stars or background galaxies. These 21μ m sources are strongly spatially associated with Hii regions (>92% of sources), while 74% of the sources are coincident with a stellar association defined in the HST data. Using SED fitting, we find that the stellar masses of the 21μ m sources span a range of 102–104M ⊙with mass-weighted ages down to 2 Myr. There is a tight correlation between attenuation-corrected Hα and 21μ m luminosity forL ν ,F2100W> 1019W Hz−1. Young embedded source candidates selected at 21μ m are found below this threshold and haveM ⋆< 103M ⊙.