skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minireview: Glucocorticoid−Leptin Crosstalk: Role of Glucocorticoid–Leptin Counterregulation in Metabolic Homeostasis and Normal Development
Synopsis Glucocorticoids and leptin are two important hormones that regulate metabolic homeostasis by controlling appetite and energy expenditure in adult mammals. Also, glucocorticoids and leptin strongly counterregulate each other, such that chronic stress-induced glucocorticoids upregulate the production of leptin and leptin suppresses glucocorticoid production directly via action on endocrine organs and indirectly via action on food intake. Altered glucocorticoid or leptin levels during development can impair organ development and increase the risk of chronic diseases in adults, but there are limited studies depicting the significance of glucocorticoid-leptin interaction during development and its impact on developmental programming. In mammals, leptin-induced suppression of glucocorticoid production is critical during development, where leptin prevents stress-induced glucocorticoid production by inducing a period of short-hyporesponsiveness when the adrenal glands fail to respond to certain mild to moderate stressors. Conversely, reduced or absent leptin signaling increases glucocorticoid levels beyond what is appropriate for normal organogenesis. The counterregulatory interactions between leptin and glucocorticoids suggest the potential significant involvement of leptin in disorders that occur from stress during development.  more » « less
Award ID(s):
2035732
PAR ID:
10483064
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative And Comparative Biology
Volume:
63
Issue:
6
ISSN:
1540-7063
Format(s):
Medium: X Size: p. 1127-1139
Size(s):
p. 1127-1139
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ongoing amphibian population declines are caused by factors such as climate change, habitat destruction, pollution and infectious diseases not limited to chytridiomycosis. Unfortunately, action is taken against these factors once population collapses are underway. To avoid these post hoc responses, wildlife endocrinology aims to analyse physiological mediators that predict future population declines to inform wildlife management. Mediators typically investigated are stress hormones known as glucocorticoids, which are produced by the Hypothalamus—Pituitary—Interrenal axis (HPI axis). The HPI axis is the part of the endocrine system that helps amphibians cope with stress. Chronic increases in glucocorticoids due to stress can lead to immune dysfunction, which makes amphibians more susceptible to infectious diseases. Despite this predictive potential of glucocorticoids, interpretation of glucocorticoid data is confounded by sampling design and type. Glucocorticoid monitoring classically involves blood sampling, which is not widely applicable in amphibians as some are too small or delicate to sample, and repeated samples are often valued. To address this, we tried to validate skin swabbing via corticosterone (CORT) and adrenocorticotropin hormone (ACTH) injections in adults of two amphibian species: Eastern red-spotted newts, Notophthalmus viridescens viridescens, with natural skin infections with Batrachochytrium dendrobatidis (Bd) upon collection in the field, and Northern leopard frogs, Rana (Lithobates) pipiens, raised in captivity and naïve to Bd exposure. Further, we determined the predictive potential of skin glucocorticoids on Bd load in the field via correlations in Eastern red-spotted newts. We found that hormones present in the skin are not related to the HPI axis and poorly predict infection load; however, skin hormone levels strongly predicted survival in captivity. Although skin swabbing is not a valid method to monitor HPI axis function in these species, the hormones present in the skin still play important roles in organismal physiology under stressful conditions relevant to wildlife managers. 
    more » « less
  2. Abstract Although the endocrine system likely plays an important role in orchestrating the transition to a migratory state, the specific mechanisms by which this occurs remain poorly understood. Changes in glucocorticoid signaling are one proposed mechanism that may be important in migratory transitions. Although previous work has focused on the role of changes in circulating glucocorticoids, another potential mechanism is changes in the expression of its cognate receptors. Here, we test this hypothesis by comparing mRNA expression of the genes for the mineralocorticoid receptor ( MR ) and glucocorticoid receptor ( GR ) in two brain regions implicated in the regulation of migratory behavior (the hippocampus and hypothalamus) in pine siskins ( Spinus pinus ) sampled before or after the transition to a spring nomadic migratory state. Compared to pre-migratory birds, migratory birds had body conditions more indicative of physiological preparations for migration (e.g., larger body mass), and greater levels of nocturnal migratory restlessness. However, we found no differences between pre-migratory and migratory birds in the expression of GR or MR mRNA in either the hippocampus or hypothalamus. Thus, differences in expression of receptors for glucocorticoids do not appear to underly the observed differences in physiology and behavior across a migratory transition. Taken together with previous results showing no change in circulating corticosterone levels during this transition, our findings provide no evidence for a role of glucocorticoid signaling in the spring migratory transition of this species. 
    more » « less
  3. In mammals, the cytokine hormone leptin promotes wound healing by increasing inflammation, cellular recruitment, angiogenic regrowth, and re-epithelialization; however, it is not known whether leptin has conserved actions on wound healing in other vertebrates. Here, we tested the hypothesis that leptin promotes both the quality and speed of wound healing in the South African clawed frog, Xenopus laevis . First, fluorescent immunohistochemistry using a polyclonal antibody specific to Xenopus leptin showed that in juvenile dorsal skin, leptin protein is expressed in the dorsal epidermal layer, as well in blood vessel endothelial cells and sensory nerves that run along the base of the dermis. Injection of recombinant Xenopus leptin (rXleptin) stimulates phosphorylated STAT3 (pSTAT3), indicative of leptin-activated JAK/STAT signaling in the epidermis. Similar to mammals, leptin protein expression increases at the wound site after injury of the epidermis. We then cultured “punch-in-a-punch” full-thickness dorsal skin explants in three doses of rXleptin (0, 10, and 100 ng/ml) and showed that leptin treatment doubled the rate of wound closure after 48 h relative to skin punches cultured without leptin. Food restriction prior to wound explant culture reduced the amount of wound closure, but leptin injection prior to euthanasia rescued closure to similar control levels. Leptin treatment also significantly reduced bacterial infection of these epidermal punches by 48 h in culture. This study shows that leptin is likely an endogenous promoter of wound healing in amphibians. Leptin-based therapies have the potential to expedite healing and reduce the incidence of secondary infections without toxicity issues, the threat of antibiotic resistance, or environmental antibiotic contamination. The conservation of leptin’s actions on wound healing also suggests that it may have similar veterinary applications for other exotic species. 
    more » « less
  4. Synopsis The ability to provision offspring with milk is a significant adaptive feature of mammals that allows for considerable maternal regulation of offspring beyond gestation, as milk provides complete nutrition for developing neonates. For mothers, lactation is a period of marked increases in energetic and nutritive demands to support milk synthesis; because of this considerable increase in demand imposed on multiple physiological systems, lactation is particularly susceptible to the effects of chronic stress. Here, we present work that explores the impact of chronic stress during lactation on maternal lactation performance (i.e., milk quality and quantity) and the expression of key milk synthesis genes in mammary tissue using a Sprague–Dawley rat model. We induced chronic stress using a well-established, ethologically relevant novel male intruder paradigm for 10 consecutive days during the postpartum period. We hypothesized that the increased energetic burden of mounting a chronic stress response during lactation would decrease lactation performance. Specifically, we predicted that chronic exposure to this social stressor would decrease either milk quality (i.e., composition of proximate components and energy density) or quantity. We also predicted that changes in proximate composition (i.e., lipid, lactose, and protein concentrations) would be associated with changes in gene expression levels of milk synthesis genes. Our results supported our hypothesis that chronic stress impairs lactation performance. Relative to the controls, chronically stressed rats had lower milk yields. We also found that milk quality was decreased; milk from chronically stressed mothers had lower lipid concentration and lower energy density, though protein and lactose concentrations were not different between treatment groups. Although there was a change in proximate composition, chronic stress did not impact mammary gland expression of key milk synthesis genes. Together, this work demonstrates that exposure to a chronic stressor impacts lactation performance, which in turn has the potential to impact offspring development via maternal effects. 
    more » « less
  5. Abstract Developmental plasticity can allow the exploitation of alternative diets. While such flexibility during early life is often adaptive, it can leave a legacy in later life that alters the overall health and fitness of an individual. Species of the spadefoot toad genusSpeaare uniquely poised to address such carryover effects because their larvae can consume drastically different diets: their ancestral diet of detritus or a derived shrimp diet. Here, we useSpeabombifronsto assess the effects of developmental plasticity in response to larval diet type and nutritional stress on juvenile behaviors and stress axis reactivity. We find that, in an open‐field assay, juveniles fed shrimp as larvae have longer latencies to move, avoid prey items more often, and have poorer prey‐capture abilities. While juveniles fed shrimp as larvae are more exploratory, this effect disappears if they also experienced a temporary nutritional stressor during early life. The larval shrimp diet additionally impairs juvenile jumping performance. Finally, larvae that were fed shrimp under normal nutritional conditions produce juveniles with higher overall glucocorticoid levels, and larvae that were fed shrimp and experienced a temporary nutritional stressor produce juveniles with higher stress‐induced glucocorticoid levels. Thus, while it has been demonstrated that consuming the novel, alternative diet can be adaptive for larvae in nature, doing so has marked effects on juvenile phenotypes that may recalibrate an individual's overall fitness. Given that organisms often utilize diverse diets in nature, our study underscores the importance of considering how diet type interacts with early‐life nutritional adversity to influence subsequent life stages. 
    more » « less