skip to main content


This content will become publicly available on March 1, 2025

Title: Centrifuge and Numerical Modeling of the Seismic Response of Buried Water Supply Reservoirs
Buried water reservoirs are increasingly being built to replace open aboveground municipal water supply reservoirs in urban areas to enhance water quality and utilize their surface footprint for other purposes such as public parks or placement of solar arrays. Many of these lifeline structures are in seismically active regions and, as such, need to be designed to remain operational after severe earthquake shaking. However, evaluating their seismic response is challenging and involves accounting for the interaction of the structure with the stored fluid and the retained soil; in other words, accounting for fluid–structure–soil interaction (FSSI). This paper presents a combined experimental–numerical study on the seismic behavior of buried water reservoirs while considering FSSI. Two series of centrifuge model tests were performed at different reservoir orientations to investigate one-dimensional (1D) and two-dimensional (2D) motion effects under full, half-full, and empty reservoir conditions. Corresponding numerical models were developed whereby the structure and the soil were represented by continuum Lagrangian finite elements, while the fluid was modeled via Arbitrary Lagrangian Eulerian formulation. Soil–structure and fluid–structure interface parameters were calibrated using the experimental measurements. The simulations successfully captured the measured reservoir responses in terms of accelerations, bending moment increments, and water pressures. The study found that the common assumption of plane strain is not applicable for reservoirs because their behavior was found to be truly three-dimensional (3D) whereby stresses accumulated at the corners. Furthermore, the full reservoir resulted in the highest seismic demands in the reservoir walls and roof while the empty reservoir yielded the highest base slippage. The study demonstrates that the complex reservoir seismic response is best captured by carrying out a 3D FSSI numerical simulation.  more » « less
Award ID(s):
1763129
NSF-PAR ID:
10483226
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Society of Civil Engineers
Date Published:
Journal Name:
Journal of Geotechnical and Geoenvironmental Engineering
Volume:
150
Issue:
3
ISSN:
1090-0241
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Seismic design of water retaining structures relies heavily on the response of the retained water to shaking. The water dynamic response has been evaluated by means of analytical, numerical, and experimental approaches. In practice, it is common to use simplified code‐based methods to evaluate the added demands imposed by water sloshing. Yet, such methods were developed with an inherent set of assumptions that might limit their application. Alternatively, numerical modeling methods offer a more accurate way of quantifying the water response and have been commonly validated using 1 g shake table experiments. In this study, a unique series of five centrifuge tests was conducted with the goal of investigating the hydrodynamic behavior of water by varying its height and length. Moreover, sine wave and earthquake motions were applied to examine the water response at different types and levels of excitation. Arbitrary Lagrangian‐Eulerian finite element models were then developed to reproduce 1 g shake table experiments available in the literature in addition to the centrifuge tests conducted in this study. The results of the numerical simulations as well as the simplified and analytical methods were compared to the experimental measurements, in terms of free surface elevation and hydrodynamic pressures, to evaluate their applicability and limitations. The comparison showed that the numerical models were able to reasonably capture the water response of all configurations both under earthquake and sine wave motions. The analytical solutions performed well except for cases with resonance under harmonic motions. As for the simplified methods, they provided acceptable results for the peak responses under earthquake motions. However, under sine wave motions, where convective sloshing is significant, they underpredict the response. Also, beyond peak ground accelerations of 0.5 g., a mild nonlinear increase in peak dynamic pressures was measured which deviates from assumed linear response in the simplified methods. The study confirmed the reliability of numerical models in capturing water dynamic responses, demonstrating their broad applicability for use in complex problems of fluid‐structure‐soil interaction.

     
    more » « less
  2. Three dimensional dynamic soil-pile group interaction has been a subject of significant research interest over the past several decades, and remains an active and challenging topic in geotechnical engineering. A variety of dynamic excitation sources may potentially induce instabilities or even failures of pile groups. Employing modern experimental and numerical techniques, the dynamics of pile groups is examined in this study by integrated physical and computational simulations. In the physical phase, full- scale in-situ elastodynamic vibration tests were conducted on a single pile and a 2×2 pile group. Comprehensive site investigations were conducted for obtaining critical soil parameters for use in dynamic analyses. Broadband random excitation was applied to the pile cap and the response of the pile and soil were measured, with the results presented in multiple forms to reveal the dynamic characteristics of the pile-soil system. In the computational phase, the BEM code BEASSI was extended and modified to enable analysis of 3D dynamic pile group problems, and the new code was validated and verified by comparison to reference cases from the literature. A new theoretical formulation for analysis of multi-modal vibration of pile groups by accelerance functions is established using the method of sub-structuring. Various methods for interpreting the numerical results are presented and discussed. Case studies and further calibration of the BEM soil profiles are conducted to optimize the match between the theoretical and experimental accelerance functions. Parametric studies are performed to quantify the influence of the primary factors in the soil-pile system. It is shown that the new 3D disturbed zone continuum models can help improve the accuracy of dynamic soil-pile interaction analysis for pile groups in layered soils. This study therefore helps to advance the fundamental knowledge on dynamic soil-pile interaction by improving the accuracy of current computational models, and contributes additional physical tests to the experimental database in the literature. The specific impedance functions generated herein can be immediately used in practice, and the underlying general 3D disturbed-zone computational framework can readily be applied to other pile group problems of interest to researchers and practitioners. 
    more » « less
  3. This study presents the first 3D two-way coupled fluid structure interaction (FSI) simulation of a hybrid anechoic wind tunnel (HAWT) test section with modeling all important effects, such as turbulence, Kevlar wall porosity and deflection, and reveals for the first time the complete 3D flow structure associated with a lifting model placed into a HAWT. The Kevlar deflections are captured using finite element analysis (FEA) with shell elements operated under a membrane condition. Three-dimensional RANS CFD simulations are used to resolve the flow field. Aerodynamic experimental results are available and are compared against the FSI results. Quantitatively, the pressure coefficients on the airfoil are in good agreement with experimental results. The lift coefficient was slightly underpredicted while the drag was overpredicted by the CFD simulations. The flow structure downstream of the airfoil showed good agreement with the experiments, particularly over the wind tunnel walls where the Kevlar windows interact with the flow field. A discrepancy between previous experimental observations and juncture flow-induced vortices at the ends of the airfoil is found to stem from the limited ability of turbulence models. The qualitative behavior of the flow, including airfoil pressures and cross-sectional flow structure is well captured in the CFD. From the structural side, the behavior of the Kevlar windows and the flow developing over them is closely related to the aerodynamic pressure field induced by the airfoil. The Kevlar displacement and the transpiration velocity across the material is dominated by flow blockage effects, generated aerodynamic lift, and the wake of the airfoil. The airfoil wake increases the Kevlar window displacement, which was previously not resolved by two-dimensional panel-method simulations. The static pressure distribution over the Kevlar windows is symmetrical about the tunnel mid-height, confirming a dominantly two-dimensional flow field. 
    more » « less
  4. null (Ed.)
    Abstract Hydroplaning is a phenomenon that occurs when a layer of water between the tire and pavement pushes the tire upward. The tire detaches from the pavement, preventing it from providing sufficient forces and moments for the vehicle to respond to driver control inputs such as breaking, accelerating, and steering. This work is mainly focused on the tire and its interaction with the pavement to address hydroplaning. Using a tire model that is validated based on results found in the literature, fluid–structure interaction (FSI) between the tire-water-road surfaces is investigated through two approaches. In the first approach, the coupled Eulerian–Lagrangian (CEL) formulation was used. The drawback associated with the CEL method is the laminar assumption and that the behavior of the fluid at length scales smaller than the smallest element size is not captured. To improve the simulation results, in the second approach, an FSI model incorporating finite element methods (FEMs) and the Navier–Stokes equations for a two-phase flow of water and air, and the shear stress transport k–ω turbulence model, was developed and validated, improving the prediction of real hydroplaning scenarios. With large computational and processing requirements, a grid dependence study was conducted for the tire simulations to minimize the mesh size yet retain numerical accuracy. The improved FSI model was applied to hydroplaning speed and cornering force scenarios. 
    more » « less
  5. Sinkhole collapse may result in significant property damage and even loss of life. Early detection of sinkhole attributes (buried voids, raveling zones) is critical to limit the cost of remediation. One of the most promising ways to obtain subsurface imaging is 3D seismic full-waveform inversion. For demonstration, a recently developed 3D Gauss-Newton full-waveform inversion (3D GN-FWI) method is used to detect buried voids, raveling soils, and characterize variable subsurface soil/rock layering. It is based on a finite-difference solution of 3D elastic wave equations and Gauss-Newton optimization. The method is tested first on a data set constructed from the numerical simulation of a challenging synthetic model and subsequently on field data collected from two separate test sites in Florida. For the field tests, receivers and sources are placed in uniform 2D surface grids to acquire the seismic wavefields, which then are inverted to extract the 3D subsurface velocity structures. The inverted synthetic results suggest that the approach is viable for detecting voids and characterizing layering. The field seismic results reveal that the 3D waveform analysis identified a known manmade void (plastic culvert), unknown natural voids, raveling, as well as laterally variable soil/rock layering including rock pinnacles. The results are confirmed later by standard penetration tests, including depth to bedrock, two buried voids, and a raveling soil zone. Our study provides insight into the application of the 3D seismic FWI technique as a powerful tool in detecting shallow voids and other localized subsurface features. 
    more » « less