Abstract Lightweight energy storage devices are essential for developing compact wearable and distributed electronics, and additive manufacturing offers a scalable, low‐cost approach to fabricating such devices with complex geometries. However, additive manufacturing of high‐performance, on‐demand energy storage devices remains challenging due to the need for stable, multifunctional nanomaterial inks. Herein, the development of 2‐dimensional (2D) titanium carbide (Ti3C2TxMXene) ink that is compatible with aerosol jet printing for energy storage applications is demonstrated. The developed MXene ink demonstrates long‐term chemical and physical stability, ensuring consistent printability and achieving high‐resolution prints (≈45 µm width lines) with minimal overspray. The high‐resolution aerosol‐jet printed MXene supercapacitor achieves an areal capacitance of 122 mF cm−2and a volumetric capacitance of 611 F cm−3, placing them among the highest‐performing printed supercapacitors reported to date. These findings highlight the potential of aerosol jet printing with MXene inks for on‐demand, scalable, and cost‐effective fabrication of printed electronic and electrochemical devices.
more »
« less
Aerosol jet printing of surface acoustic wave microfluidic devices
Abstract The addition of surface acoustic wave (SAW) technologies to microfluidics has greatly advanced lab-on-a-chip applications due to their unique and powerful attributes, including high-precision manipulation, versatility, integrability, biocompatibility, contactless nature, and rapid actuation. However, the development of SAW microfluidic devices is limited by complex and time-consuming micro/nanofabrication techniques and access to cleanroom facilities for multistep photolithography and vacuum-based processing. To simplify the fabrication of SAW microfluidic devices with customizable dimensions and functions, we utilized the additive manufacturing technique of aerosol jet printing. We successfully fabricated customized SAW microfluidic devices of varying materials, including silver nanowires, graphene, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). To characterize and compare the acoustic actuation performance of these aerosol jet printed SAW microfluidic devices with their cleanroom-fabricated counterparts, the wave displacements and resonant frequencies of the different fabricated devices were directly measured through scanning laser Doppler vibrometry. Finally, to exhibit the capability of the aerosol jet printed devices for lab-on-a-chip applications, we successfully conducted acoustic streaming and particle concentration experiments. Overall, we demonstrated a novel solution-based, direct-write, single-step, cleanroom-free additive manufacturing technique to rapidly develop SAW microfluidic devices that shows viability for applications in the fields of biology, chemistry, engineering, and medicine.
more »
« less
- PAR ID:
- 10483461
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Microsystems & Nanoengineering
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2055-7434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The utilization of silicon photonics and integrated optics provide a transformative solution to many technological challenges presented today. The manufacturing and testing of these devices and their interconnects has historically been performed in a cleanroom environment using advanced semiconductor technologies, hence requiring costly infrastructure and an advanced workforce. Advances in additive manufacturing have yielded the two-photon polymerization method, among whose various intended applications is the fabrication of optical devices. In this work, through the use of the two-photon polymerization method and FDTD simulations, optical passive components are simulated and fabricated to demonstrate the capability of this effective new additive manufacturing method.more » « less
-
Cavities fabricated on the microscale have a wide variety of applications, from microwells for cell cultures, microfluidic channels for drug delivery systems to waveguide structures for RF applications. Micro-cavities are particularly useful for sensing applications, such as cavity-based pressure sensors and gap-based capacitive sensors. Cavity structures have been widely demonstrated in MEMS devices using typical semiconductor processing. However, the development of similar structures for flexible applications poses additional challenges. While flexible cavity structures have been fabricated in laboratory environments, challenges arise when these structures are integrated into a larger flexible sensing device or flexible hybrid electronics system. An additive manufacturing approach to cavity formation is presented which utilizes a 3D screen-printing process and in-situ cure. Patterned micro-structures are formed by building up layers of dielectric ink interspersed as needed with printed conductive traces. A proof-of-concept microfluidic channel-based capacitor is fabricated to demonstrate the potential sensing applications for the fabricated microcavities.more » « less
-
There has been an increasing need of technologies to manufacturing chemical and biological sensors for various applications ranging from environmental monitoring to human health monitoring. Currently, manufacturing of most chemical and biological sensors relies on a variety of standard microfabrication techniques, such as physical vapor deposition and photolithography, and materials such as metals and semiconductors. Though functional, they are hampered by high cost materials, rigid substrates, and limited surface area. Paper based sensors offer an intriguing alternative that is low cost, mechanically flexible, has the inherent ability to filter and separate analytes, and offers a high surface area, permeable framework advantageous to liquid and vapor sensing. However, a major drawback is that standard microfabrication techniques cannot be used in paper sensor fabrication. To fabricate sensors on paper, low temperature additive techniques must be used, which will require new manufacturing processes and advanced functional materials. In this work, we focus on using aerosol jet printing as a highresolution additive process for the deposition of ink materials to be used in paper-based sensors. This technique can use a wide variety of materials with different viscosities, including materials with high porosity and particles inherent to paper. One area of our efforts involves creating interdigitated microelectrodes on paper in a one-step process using commercially available silver nanoparticle and carbon black based conductive inks. Another area involves use of specialized filter papers as substrates, such as multi-layered fibrous membrane paper consisting of a poly(acrylonitrile) nanofibrous layer and a nonwoven poly(ethylene terephthalate) layer. The poly(acrylonitrile) nanofibrous layer are dense and smooth enough to allow for high resolution aerosol jet printing. With additively fabricated electrodes on the paper, molecularly-functionalized metal nanoparticles are deposited by molecularly-mediated assembling, drop casting, and printing (sensing and electrode materials), allowing full functionalization of the paper, and producing sensor devices with high surface area. These sensors, depending on the electrode configuration, are used for detection of chemical and biological species in vapor phase, such as water vapor and volatile organic compounds, making them applicable to human performance monitoring. These paper based sensors are shown to display an enhancement in sensitivity, as compared to control devices fabricated on non-porous polyimide substrates. These results have demonstrated the feasibility of paper-based printed devices towards manufacturing of a fully wearable, highly-sensitive, and wireless human performance monitor coupled to flexible electronics with the capability to communicate wirelessly to a smartphone or other electronics for data logging and analysis.more » « less
-
Abstract The development of smart materials capable of dynamic shape morphing and rapid responsiveness has garnered significant interest for applications in soft robotics, tissue engineering, programmable materials, and adaptive structures. Hydrogels, owing to their intrinsic biocompatibility and flexibility, are promising candidates for such systems. Embedding micro-scale materials within hydrogel networks can further enhance their mechanical and functional properties. In this study, we present a hybrid fabrication platform that integrates surface acoustic wave (SAW)-based acoustofluidics with digital light processing (DLP) photopolymerization to fabricate smart hydrogel composites with programmable shape-memorable behavior. Using the SAW-induced acoustic potential field, silicon carbide (SiC) micro-whiskers are aligned within a custom UV-curable hydrogel ink and subsequently fixed via high-resolution DLP photopolymerization. This dual-control approach enables independent manipulation of micro-whisker orientation and structural geometry. Numerical simulations and Laser Doppler vibrometry-based validation were employed to characterize the acoustic field. To evaluate shape-memory behavior, the fabricated hydrogels were subjected to dehydration and rehydration cycles. The resulting shape transformations, driven by internal stress gradients within the aligned microparticle framework, enabled humidity-responsive actuation. This work establishes a novel strategy for constructing 4D-printed smart hydrogels, offering a versatile platform for the development of next-generation programmable materials and adaptive structures.more » « less
An official website of the United States government
