skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A kirigami-enabled electrochromic wearable variable-emittance device for energy-efficient adaptive personal thermoregulation
For centuries, people have put effort to improve the thermal performance of clothing to adapt to varying temperatures. However, most clothing we wear today only offers a single-mode insulation. The adoption of active thermal management devices, such as resistive heaters, Peltier coolers, and water recirculation, is limited by their excessive energy consumption and form factor for long-term, continuous, and personalized thermal comfort. In this paper, we developed a wearable variable-emittance (WeaVE) device, enabling the tunable radiative heat transfer coefficient to fill the missing gap between thermoregulation energy efficiency and controllability. WeaVE is an electrically driven, kirigami-enabled electrochromic thin-film device that can effectively tune the midinfrared thermal radiation heat loss of the human body. The kirigami design provides stretchability and conformal deformation under various modes and exhibits excellent mechanical stability after 1,000 cycles. The electronic control enables programmable personalized thermoregulation. With less than 5.58 mJ/cm2 energy input per switching, WeaVE provides 4.9°C expansion of the thermal comfort zone, which is equivalent to a continuous power input of 33.9 W/m2. This nonvolatile characteristic substantially decreases the required energy while maintaining the on-demand controllability, thereby providing vast opportunities for the next generation of smart personal thermal managing fabrics and wearable technologies.  more » « less
Award ID(s):
2324286
PAR ID:
10483492
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Derek Abbott
Publisher / Repository:
PNAS Nexus
Date Published:
Journal Name:
PNAS Nexus
Volume:
2
Issue:
11
ISSN:
2752-6542
Subject(s) / Keyword(s):
Materials Engineering, Sustainability Science (Physical Sciences and Engineering)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this study is to assess the effectiveness of wearable cooling in improving thermal comfort for a warm environment that would become prevalent due to more frequent extreme weather events, especially when air conditioning is not accessible for many developing countries. The experiment was conducted in an environment room with air temperature maintained at 31 °C and relative humidity at 55%. The study tested 30 participants using a wearable cooling device at the upper back location, while another 30 had no local cooling as the control group. Participants’ thermal comfort, thermal sensation and other metrics were assessed three times for a test session. The clothing insulation was 0.36 clo to simulate summer attire. The results showed significantly lower average local and whole-body thermal sensation for the participants with the wearable cooling device than the control group by considering all the votes during the entire session. Compared to the baseline, in particular, the local cooling group indicated a significant reduction in local thermal sensation for all three times of self-evaluation. Nevertheless, the reduction in overall thermal sensation occurred right after the local cooling was applied. Such a significant reduction was not observed after a while and then emerged again during the test, indicating an interactive phenomenon involving thermal adaptation and comfort restoration which will be investigated in the future. 
    more » « less
  2. Abstract Electronic textiles (e‐textiles) that combine the wearing comfort of textiles and the functionality of soft electronics are highly demanded in wearable applications. However, fabricating robust high‐performance stretchable e‐textiles with good abrasion resistance and high‐resolution aesthetic patterns for high‐throughput manufacturing and practical applications remains challenging. Herein, the authors report a new multifunctional e‐textile fabricated via screen printing of the water‐based silver fractal dendrites conductive ink. The as‐fabricated e‐textiles spray‐coated with the invisible waterproofing agent exhibit superior flexibility, water resistance, wearing comfort, air permeability, and abrasion resistance, achieving a low sheet resistance of 0.088 Ω sq−1, high stretchability of up to 154%, and excellent dynamic stability for over 1000 cyclic testing (ε = 100%). The printed e‐textiles can be explored as strain sensors and ultralow voltage‐driven Joule heaters driven for personalized thermal management. They finally demonstrate an integrated aesthetic smart clothing made of their multifunctional e‐textiles for human motion detection and body‐temperature management. The printed e‐textiles provide new opportunities for developing novel wearable electronics and smart clothing for future commercial applications. 
    more » « less
  3. Using infrared electrochromism as the strategy to combat the fluctuation of environmental conditions, wearable variable-emittance (WeaVE) devices are able to integrate the functionality of personal thermoregulation and closed-loop control into the future textile, featuring its large tunable range, ultra-low energy consumption, lightweight, and wearability. Recently, this new wearable technology has evolved beyond planar electrochromic cells and is moving closer to woven textiles. To further improve electrochromic performance and wearability, comprehensive progress is necessary from materials science to fabrication techniques. In this Perspective, we elaborate on the mechanisms behind electrochemically active WeaVE devices, analyze how dynamic and fundamental studies may improve the electrochromic performance, and explore the possibility of incorporating nanophotonic designs in the development of this future smart textile through research. 
    more » « less
  4. Personal thermal management textile/wearable is an effective strategy to expand the indoor temperature setpoint range to reduce a building’s energy consumption. Usually, textiles/wearables that were engineered for controlling conduction, convection, radiation, or sweat evaporation have been developed separately. Here, we demonstrate a multimodal adaptive wearable with moisture-responsive flaps composed of a nylon/metal heterostructure, which can simultaneously regulate convection, sweat evaporation, and mid-infrared emission to accomplish large and rapid heat transfer tuning in response to human perspiration vapor. We show that the metal layer not only plays a crucial role in low-emissivity radiative heating but also enhances the bimorph actuation performance. The multimodal adaptive mechanism expands the thermal comfort zone by 30.7 and 20.7% more than traditional static textiles and single-modal adaptive wearables without any electricity and energy input, making it a promising design paradigm for personal heat management. 
    more » « less
  5. null (Ed.)
    Perspiration level monitoring enables numerous applications such as physical condition estimation, personal comfort monitoring, health/exercise monitoring, and inference of environmental conditions of the user. Prior works on perspiration (sweat) sensing require users to manually hold a device or attach adhesive sensors directly onto their skin, limiting user mobility and comfort. In this paper, we present a low-cost and novel wearable sensor system that is able to accurately estimate an individual's sweat level based on measuring moisture. The sensor is designed in a threadlike form factor, allowing it to be sewn into the seams of clothing, rather than having to act as a standalone sensor that the user must attach to their body. The system is comprised of multiple cotton-covered conductive threads that are braided into one sensor. When a person sweats, the resistance between the braided conductive threads changes as moisture becomes trapped in the cotton covering of the threads. The braided three-dimensional structure allows for robust estimation of perspiration level in the presence of external forces that may cause sensor distortion, such as motion. We characterize the relationship between the volume of sweat and measured resistance between the braided threads. Finally, we weave our sensors into the fabric of a shirt and conduct on-body experiments to study users' sweating level through various activities. 
    more » « less