skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring the Performance of iCloud Private Relay
Recent developments in Internet protocols and services aim to provide enhanced security and privacy for users’ traffic. Apple’s iCloud Private Relay is a premier example of this trend, introducing a well-provisioned, multi-hop architecture to protect the privacy of users’ traffic while minimizing the traditional drawbacks of additional network hops (e.g., latency). Announced in 2021, the service is currently in the beta stage, offering an easy and cheap privacy-enhancing alternative directly integrated into Apple’s operating systems. This seamless integration makes a future massive adoption of the technology very likely, calling for studies on its impact on the Internet. Indeed, the iCloud Private Relay architecture inherently introduces computational and routing overheads, possibly hampering performance. In this work, we study the service from a performance perspective, across a variety of scenarios and locations. We show that iCloud Private Relay not only reduces speed test performance (up to 10x decrease) but also negatively affects page load time and download/upload throughput in different scenarios. Interestingly, we find that the overlay routing introduced by the service may increase performance in some cases. Our results call for further investigations into the effects of a large-scale deployment of similar multi-hop privacy-enhancing architectures. For increasing the impact of our work we contribute our software and measurements to the community.  more » « less
Award ID(s):
1662487
PAR ID:
10483619
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Page Range / eLocation ID:
3-17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional Internet routing is simple, scalable and robust, but cannot provide perfect QoS support due to the current completely distributed hop-by-hop routing architecture. Software defined networking (SDN) opens up the door to traffic engineering innovation and makes possible QoS routing with a broader picture of overall network resources. We further argue that SDN can provide more opportunity for the network users to make their own routing selections with network programmability. In this paper, we propose OpenMCR, a general framework for network users to make their own choice of routing given various requirements. OpenMCR provides routing subject to several additive QoS constraints, which is NP-hard when the number of constraints is two or more. By composing various necessary conditions with different path extension schemes, our platform can customize routing solutions for each network user based on their own requirements. Through experiments in an SDN emulated environment, we evaluate multiple aspects of OpenMCR, demonstrate its effectiveness compared with several baselines and validate our theoretical analysis. 
    more » « less
  2. Optimizing request routing in large microservice-based applications is difficult, especially when applications span multiple geo-distributed clusters. In this paper, inspired by ideas from network traffic engineering, we propose Service Layer Traffic Engineering (SLATE), a new framework for request routing in microservices that span multiple clusters. SLATE leverages global knowledge of cluster states and multi-hop application graphs to centrally control the flow of requests in order to optimize end-to-end application latency and cost. Realizing such a system requires tackling several technical challenges unique to service layer, such as accounting for different request traffic classes, multi-hop call trees, and application latency profiles. We identify such challenges and build a preliminary prototype that addresses some of them. Preliminary evaluations of our prototype show how SLATE outperforms the state-of-the-art global load balancing approach (used by Meta’s Service Router and Google’s Traffic Director) by up to 3.5× in average latency and reduces egress bandwidth cost by up to 11.6×. 
    more » « less
  3. null (Ed.)
    The number of devices connected to Internet of Things (IoT) and massive machine-type communication (mMTC) networks is expected to increase exponentially in the next generation of wireless communication systems, resulting in a new type of “massive” random access network. However, most of the work in this emerging field considers the single-hop setting with direct communication between the users and a fully-equipped base station. In contrast, this work explores the massive random access problem in a two-hop relay setting where users access the network through a femto- or pico-cell relay which itself only has a limited amount of bandwidth/power. We present two low-complexity relaying schemes designed to minimize power consumption and discuss their tradeoffs using numerical simulations. 
    more » « less
  4. Routing solutions for multi-hop underwater wireless sensor networks suffer significant performance degradation as they fail to adapt to the overwhelming dynamics of underwater environments. To respond to this challenge, we propose a new data forwarding scheme where relay selection swiftly adapts to the varying conditions of the underwater channel. Our protocol, termed CARMA for Channel-aware Reinforcement learning-based Multi-path Adaptive routing, adaptively switches between single-path and multi-path routing guided by a distributed reinforcement learning framework that jointly optimizes route-long energy consumption and packet delivery ratio. We compare the performance of CARMA with that of three other routing solutions, namely, CARP, QELAR and EFlood, through SUNSET-based simulations and experiments at sea. Our results show that CARMA obtains a packet delivery ratio that is up to 40% higher than that of all other protocols. CARMA also delivers packets significantly faster than CARP, QELAR and EFlood, while keeping network energy consumption at bay. 
    more » « less
  5. null (Ed.)
    Abstract The proliferation of smart home Internet of things (IoT) devices presents unprecedented challenges for preserving privacy within the home. In this paper, we demonstrate that a passive network observer (e.g., an Internet service provider) can infer private in-home activities by analyzing Internet traffic from commercially available smart home devices even when the devices use end-to-end transport-layer encryption . We evaluate common approaches for defending against these types of traffic analysis attacks, including firewalls, virtual private networks, and independent link padding, and find that none sufficiently conceal user activities with reasonable data overhead. We develop a new defense, “stochastic traffic padding” (STP), that makes it difficult for a passive network adversary to reliably distinguish genuine user activities from generated traffic patterns designed to look like user interactions. Our analysis provides a theoretical bound on an adversary’s ability to accurately detect genuine user activities as a function of the amount of additional cover traffic generated by the defense technique. 
    more » « less