In order to lead the social process required to solve society’s grandest challenges and ensure that the capabilities of an expanded engineering workforce are successfully harnessed, new engineers must be more than just technical experts—they must also be technical leaders. Greater numbers of engineering educators are recognizing this need and establishing engineering leadership certificates and minors through centers at universities throughout the country. While the implementation of these offerings is a step forward, most programs tend to focus on leadership as a set of skills or experiences bolted onto a traditional engineering education with limited formal evidence of the impact these experiences have on student development. The purpose of this study is to test the effect of experiences engineering students have in leadership roles on their perceived gains in leadership skills, using a national dataset. The framework guiding this study is a model for engineering leadership identity constructed from Lave and Wenger’s communities of practice model and Komives et al.’s model for leadership identity development (LID) which recognizes that the engineering formation process is, at its core, an identity development process. Engineering leadership is theorized to develop from peripheral participation in engineering communities of practice in ways that promote students’ leadership development. Specifically, undertaking leadership roles in curricular and co-curricular engineering activities develops students’ sense of engineering leadership identity, which results in their recognition of gains in different leadership skills. The data for this study come from the 2015 administration of the National Survey of Student Engagement (NSSE), overseen by the Center for Postsecondary Research at Indiana University. The NSSE is administered to a random sample of first- and fourth-year students, and focuses on curricular and co-curricular student engagement. In 2015, NSSE included a pilot module to assess leadership experiences at 21 participating institutions. The overall sample includes 2607 students who held a leadership role, among whom are 90 engineering students. The dependent variables for this study are a set of eight items prompting students to indicate the extent to which participation in a leadership role contributed to development of different leadership skills. This study employs multiple regression to test the relationships among leadership related experiences and eight leadership skill outcomes for engineering students. Significant results across the eight regression models paint a complex portrait regarding factors that affect gains in leadership skills for engineering students. For example, receiving formal leadership training is a significant positive predictor of only three of the leadership outcomes explored in this work: thinking critically and analytically, working effectively with others, and continuing leadership after college. These results can be utilized by educators engaged in Engineering Leadership education to tailor their program experiences and better achieve the desired educational outcomes.
more »
« less
LEADing The Way: A Review of Engineering Leadership Development Programs
The United States’ global leadership is predicated upon not only a sufficient technical workforce, but more critically, leaders among them who will inspire them to create the technology better and faster than our competitors. Caterpillar, General Electric, Lockheed Martin, and Siemens among others have created their own internal leadership development programs. This not only highlights the need for strong leadership in a work environment, but it also reveals the necessity for leadership education in new engineering employees. Industry is also responding to this shortage by supporting the creation of technical leadership development programs at universities. Leadership development is a relatively new and growing trend in engineering colleges with an estimated 80% of the programs in North America having been created in the past ten years. Through this partnership, a corporate sponsor and university can work together to implement a specialized curriculum that makes program graduates skilled and competent in their field upon graduation. A review of these leadership development programs will evaluate their key components that facilitate accountability, achievement, and excellence. This paper is based upon the results of a national survey of ASEE Engineering Leadership Division (LEAD) members to compare and contrast the innovative components that have been implemented within various engineering leadership development programs. The following components will be examined: cross-cultural education, team-based applied projects, leadership coursework, mentorship, and corporate sponsorship, among other components. The main objective of this paper is to examine these components, identify innovative practices, and promote the importance and growth of engineering leadership education.
more »
« less
- Award ID(s):
- 1644166
- PAR ID:
- 10483671
- Publisher / Repository:
- American Society for Engineering Education
- Date Published:
- Journal Name:
- ASEE annual conference exposition
- ISSN:
- 2153-5965
- Subject(s) / Keyword(s):
- Engineering Leadership Development STEM Leadership Development
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In order to most effectively contribute to the development of solutions to society’s greatest challenges, engineers must learn to lead the interdisciplinary teams required to develop these solutions. However, most undergraduate engineering programs do little to develop leadership skills in their students. Perhaps, one reason for this gap between needs and education is a conflict between the development of an engineering identity and a leadership identity. To date, the literature contains little work that illustrates the role leadership concepts play in the formation of an engineering identity. Therefore, more work is needed to understand the formation of a leadership identity within the formation of an engineering identity. Together, these development processes constitute the formation of engineering leaders. This paper presents the methods underway to validate and refine a proposed theoretical model of engineering leadership identity development. This model can be used to reshape existing engineering leadership education programs and integrate leadership into the engineering curriculum in an innovative manner. The model starts with a fundamental assumption that the engineering leadership formation process is, at its core, an identity development process. This assumption is also central to two established theoretical perspectives that informed the construction of this model. Lave and Wenger’s (1991) communities of practice model argues that the development of a professional identity is the outcome of learning within a community of practice, and is frequently used to explain the process by which undergraduates develop a sense of engineering identity. The communities of practice model is then combined with Komives, Owen, Longerbeam, Mainella, and Osteen’s (2005) Leadership Identity Development Model to outline how engineering students might cultivate a self-concept as a leader. A key argument within this model is that college students develop a personal sense of leadership as an identity when they view leadership as a process, not merely a position. This paper first explains the development of this theoretical model of engineering leadership identity development combining the literature from engineering identity development, leadership identity development within collegiate populations, and engineering leadership. Following this explanation, this work focuses on the methods developed and currently being deployed to validate and refine the model, including initial findings from this research.more » « less
-
The California Community College system plays an important role in providing affordable and accessible education to diverse student populations by allowing them to complete all of their lower-division course work and then transfer to a four-year institution to complete a bachelor’s degree. However, the increasing divergence of the lower-division requirements among different four-year institutions and among the different fields of engineering, coupled with decreasing enrollments and resources, has forced many community colleges to cancel low-enrollment classes and high-cost programs including those in engineering. To address this issue, four community colleges in the San Francisco Bay Area developed an innovative program titled Creating Alternative Learning Strategies for Transfer Engineering Programs (CALSTEP). Funded by the National Science Foundation through the Improving Undergraduate STEM Education (IUSE) program, CALSTEP aims to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. In addition to developing and implementing curriculum materials and resources for the core lower-division engineering courses, one of the main components of CALSTEP is disseminating the curriculum widely in California community college engineering programs. This is done through the Summer Engineering Teaching Institute, which is a two-day teaching workshop that introduces community college engineering faculty to the CALSTEP curriculum, and assists faculty in implementing the curriculum and developing alternative teaching and learning strategies to increase enrollment and improve teaching effectiveness. Results of curriculum development and the implementation of the Summer Engineering Teaching Institute will be highlighted in this paper, as well as future plans to maximize the impact of the program in increasing access to engineering education among thousands of community college engineering students and strengthening engineering transfer programs in the state.more » « less
-
Only through successful collaborations from multi-disciplinary teams will society be able to solve our most complex engineering challenges. In order to be successful, these collaborations require effective technical leadership, a role that engineers can and should fill. However, most engineering students complete their undergraduate degrees underprepared to begin assuming a leadership role. One reason for this lack of preparation is a conflict between the development of an engineering identity and a leadership identity. This work explores this conflict using data from a national data set of college student leadership experiences compiled by the National Survey of Student Engagement. The data was used to explore the difference between engineering majors and others with regard to their leadership experiences, perceptions of leadership, and leadership development activities. Initial results indicate significant differences between engineering students, other STEM majors and non-STEM majors in their perceptions about how their leadership experiences complement their education and support their future career goals.more » « less
-
The development of inclusive leaders is essential for the success of future engineering and our nation. Equipping students with vital leadership-enabling competencies is necessary to develop a workforce that is prepared to act ethically, and responsibly, and tackle unforeseen challenges in the future. Inclusive leaders, or leaders that are self-aware, empathetic, and prioritize diversity, equity, and inclusion in their decision-making, are essential for the forward progress of engineering. A growing body of literature highlights the numerous ways in which students may develop leadership skills outside of the classroom through involvement in out-of-class activities (e.g., internships, clubs, sports, and research experiences). Research Experiences for Undergraduates (REUs) may provide students with a unique opportunity to develop leadership-enabling competencies that will prepare them for leadership in graduate school, the engineering industry, or academia. The goal of this research was to identify how students’ engagement in an engineering education virtual REU site contributed to their development of essential leadership-enabling competencies. The research question guiding this study was ‘What inclusive leadership-enabling competencies and skills did engineering students learn and develop during an engineering education Summer REU program?’ Qualitative data was collected via weekly open-ended surveys from 9 students (7 women, 2 men) participating in an REU over 9 weeks. Participants in this study consisted of students from underrepresented groups in engineering (e.g., Black, Latinx, women, students from low SES backgrounds, or first-generation students), attending large public research universities across the United States. This study implemented mixed methods to understand what leadership competencies were occurring most frequently and how students were learning and developing these competencies. A combination of text mining for frequency (quantitative analysis) and deductive and inductive coding (qualitative analysis) was used to analyze the data. A codebook was developed based on the leadership-coupled professional competencies that engineering industry leaders identified as essential for engineers entering the workforce. Researchers also allowed for other competencies and leadership-enabling skills to emerge from the data. Findings from this work indicate that students were developing a vast amount of inclusive leadership knowledge and skills from participating in the virtual REU site. This paper highlights, through the use of word clouds and text mining software, the many leadership-enabling competencies that participants developed throughout the summer research experience (e.g., learning, communication, adaptability, self-awareness, balance, networking, etc.). Further, students were able to develop digital literacy, increased communication skills, knowledge of career pathways, intrapersonal growth, and interpersonal relations. This work offers a novel contribution to the literature in understanding how students can develop technical engineering and research skills as well as professional and leadership skills in the same space. Findings from this work help to illuminate the benefits of this virtual REU site focused on engineering education research resulting in terms of developing inclusive leadership skills. Implications for future REU programs, students interested in developing leadership skills, engineering graduate programs, academia, and industry employers are outlined.more » « less
An official website of the United States government

