skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soil Moisture Sensing with UAV-Mounted IR-UWB Radar and Deep Learning
Wide-area soil moisture sensing is a key element for smart irrigation systems. However, existing soil moisture sensing methods usually fail to achieve both satisfactory mobility and high moisture estimation accuracy. In this paper, we present the design and implementation of a novel soil moisture sensing system, named as SoilId, that combines a UAV and a COTS IR-UWB radar for wide-area soil moisture sensing without the need of burying any battery-powered in-ground device. Specifically, we design a series of novel methods to help SoilId extract soil moisture related features from the received radar signals, and automatically detect and discard the data contaminated by the UAV's uncontrollable motion and the multipath interference. Furthermore, we leverage the powerful representation ability of deep neural networks and carefully design a neural network model to accurately map the extracted radar signal features to soil moisture estimations. We have extensively evaluated SoilId against a variety of real-world factors, including the UAV's uncontrollable motion, the multipath interference, soil surface coverages, and many others. Specifically, the experimental results carried out by our UAV-based system validate that SoilId can push the accuracy limits of RF-based soil moisture sensing techniques to a 50% quantile MAE of 0.23%.  more » « less
Award ID(s):
2154059
PAR ID:
10483867
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
7
Issue:
1
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Unmanned Aerial Vehicles (UAVs) have demonstrated efficacy as a platform for remote life sensing in post-disaster search and rescue applications. Radar-assisted UAV respiration motion sensing technology also shows promise yet a significant technological challenge remains associated with interfering motion artefacts from the moving UAV platform. The feasibility of integrating an adaptive filter approach for the compensation of platform motion artefacts is investigated here for the extraction of respiratory motion signatures. A 24-GHz dual radar system was attached to a mechanical mover to emulating motion artefacts while measuring the motion of a robotic breathing phantom designed to reproduce breathing motion patterns. Recursive least square (RLS) and a least mean square (LMS) adaptive filter algorithms were employed to test efficacy for extracting respiratory rate from the motion corrupted breathing signal. Experimental results demonstrated that the RLS performed best with an accuracy of 98.24% for extracting the frequency of the robotic breathing phantom mover. The proposed system has several potential applications including military, humanitarian, and post-disaster search and rescue operations. 
    more » « less
  2. Radar sensing of respiratory motion from unmanned aerial vehicles (UAVs) offers great promise for remote life sensing especially in post-disaster search and rescue applications. One major challenge for this technology is the management of motion artifacts from the moving UAV platform. Prior research has focused on using an adaptive filtering approach which requires installing a secondary radar module for capturing platform motion as a noise reference. This paper investigates the potential of the empirical mode decomposition (EMD) technique for the compensation of platform motion artifacts using only primary radar measurements. Experimental results demonstrated that the proposed EMD approach can extract the fundamental frequency of the breathing motion from the combined breathing and platform motion using only one radar, with an accuracy above 87%. 
    more » « less
  3. Passive Remote Sensing services are indispensable in modern society because of the applications related to climate studies and earth science. Among those, NASA’s Soil Moisture Active and Passive (SMAP) mission provides an essential climate variable such as the moisture content of the soil by using microwave radiation within protected band over 1400-1427 MHz. However, because of the increasing active wireless technologies such as Internet of Things (IoT), unmanned aerial vehicles (UAV), and 5G wireless communication, the SMAP’s passive observations are expected to experience an increasing number of Radio Frequency Interference (RFI). RFI is a well-documented issue and SMAP has a ground processing unit dedicated to tackling this issue. However, advanced techniques are needed to tackle the increasing RFI problem for passive sensing systems and to jointly coexist communication and sensing systems. In this paper, we apply a deep learning approach where a novel Convolutional Neural Network (CNN) architecture for both RFI detection and mitigation is employed. SMAP Level 1A spectrogram of antenna counts and various moments data are used as the inputs to the deep learning architecture. We simulate different types of RFI sources such as pulsed, CW or wideband anthropogenic signals. We then use artificially corrupted SMAP Level 1B antenna measurements in conjunction with RFI labels to train the learning architecture. While the learned detection network classifies input spectrograms as RFI or no-RFI cases, the mitigation network reconstructs the RFI mitigated antenna temperature images. The proposed learning framework both takes advantage of the existing SMAP data and the simulated RFI scenarios. Future remote sensing systems such as radiometers will suffer an increasing RFI problem and spectrum sharing and techniques that will allow coexistance of sensing and communication systems will be utmost importance for both parties. RFI detection and mitigation will remain a prerequisite for these radiometers and the proposed deep learning approach has the potential to provide an additional perspective to existing solutions. We will present detailed analysis on the selected deep learning architecture, obtained RFI detection accuracy levels and RFI mitigation performance. 
    more » « less
  4. With the large-scale deployment of connected and autonomous vehicles, the demand on wireless communication spectrum increases rapidly in vehicular networks. Due to increased demand, the allocated spectrum at the 5.9 GHz band for vehicular communication cannot be used efficiently for larger payloads to improve cooperative sensing, safety, and mobility. To achieve higher data rates, the millimeter-wave (mmWave) automotive radar spectrum at 76-81 GHz band can be exploited for communication. However, instead of employing spectral isolation or interference mitigation schemes between communication and radar, we design a joint system for vehicles to perform both functions using the same waveform. In this paper, we propose radar processing methods that use pilots in the orthogonal frequency-division multiplexing (OFDM) waveform. While the radar receiver exploits pilots for sensing, the communication receiver can leverage pilots to estimate the time-varying channel. The simulation results show that proposed radar processing can be efficiently implemented and meet the automotive radar requirements. We also present joint system design problems to find optimal resource allocation between data and pilot subcarriers based on radar estimation accuracy and effective channel capacity. 
    more » « less
  5. Water resource has become one of the most precious resources in recent decades. Agriculture accounts for about 80\% of the total water usage in US. There is a demanding need for efficient irrigation and water management systems built for sustainable water utilization in smart agriculture. Real time in-situ soil moisture sensing is a vital part for smart agriculture. Traditional electromagnetic (EM) based soil moisture sensing relies on EM based wireless sensor or ground penetrating radar (GPR) system. Based on the receiving signal strength and delay, tomographic techniques are used to derive the dielectric parameters of the soil, which are then into soil moisture distribution using empirical model. However, the EM signal attenuate sharply during underground propagation because of high operating frequency and lossy medium. In order to counter the disadvantage for underground sensing, we propose a Magnetic Induction (MI) based large range soil moisture sensing scheme in inhomogeneous environments. Here, we present the topology of the sensing system and analyze the channel model. The sensing process is based on transformed model, the conductivity and permittivity distribution are derived using SIRT algorithm. Through COMSOL simulation and analytical results, our proposed soil moisture sensing method achieves a root mean square error (RMSE) of 0.06 m^3/m^3 in 40 m 2D scale inhomogeneous environment range. 
    more » « less