skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-throughput prediction of oxygen vacancy defect migration near misfit dislocations in SrTiO 3 /BaZrO 3 heterostructures
Among their numerous technological applications, semi-coherent oxide heterostructures have emerged as promising candidates for applications in intermediate temperature solid oxide fuel cell electrolytes, wherein interfaces influence ionic transport.Since misfit dislocations impact ionic transport in these materials, oxygen vacancy formation and migration at misfit dislocations in oxide heterostructures are central to their performance as an ionic conductor. Herein, we report high-throughput atomistic simulations to predict thousands of activation energy barriers for oxygen vacancy migration at misfit dislocations in SrTiO3/BaZrO3 heterostructures. Dopants display a noticeable effect as higher activation energies are uncovered in their vicinity. Interface layer chemistry has a fundamental influence on the magnitude of activation energy barriers since they are dissimilar at misfit dislocations as compared to coherent terraces. Lower activation energies are uncovered when oxygen vacancies migrate toward misfit dislocations, but higher energies when they hop away, revealing that oxygen vacancies would get trapped at misfit dislocations and impact ionic transport. The results herein offer atomic scale insights into ionic transport at misfit dislocations and fundamental factors governing the ionic conductivity of thin film oxide electrolytes.  more » « less
Award ID(s):
2042311
PAR ID:
10484136
Author(s) / Creator(s):
;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Materials Advances
Volume:
5
Issue:
1
ISSN:
2633-5409
Page Range / eLocation ID:
315 to 328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mismatched complex oxide thin films and heterostructures have gained significant traction for use as electrolytes in intermediate temperature solid oxide fuel cells, wherein interfaces exhibit variation in ionic conductivity as compared to the bulk. Although misfit dislocations present at interfaces in these structures impact ionic conductivity, the fundamental mechanisms responsible for this effect are not well understood. To this end, a kinetic lattice Monte Carlo (KLMC) model was developed to trace oxygen vacancy diffusion at misfit dislocations in SrTiO3/BaZrO3 heterostructures and elucidate the atomistic mechanisms governing ionic diffusion at oxide interfaces. The KLMC model utilized oxygen vacancy migration energy barriers computed using molecular statics. While some interfaces promote oxygen vacancy diffusion, others impede their transport. Fundamental factors such as interface layer chemistry, misfit dislocation structure, and starting and ending sites of migrating ions play a crucial role in oxygen diffusivity. Molecular dynamics (MD) simulations were further performed to support qualitative trends for oxygen vacancy diffusion. Overall, the agreement between KLMC and MD is quite good, though MD tends to predict slightly higher conductivities, perhaps a reflection of nuanced structural relaxations that are not captured by KLMC. The current framework comprising KLMC modeling integrated with molecular statics offers a powerful tool to perform mechanistic studies focused on ionic transport in thin film oxide electrolytes and facilitate their rational design. 
    more » « less
  2. Abstract Defect engineering in valence change memories aimed at tuning the concentration and transport of oxygen vacancies are studied extensively, however mostly focusing on contribution from individual extended defects such as single dislocations and grain boundaries. In this work, the impact of engineering large numbers of grain boundaries on resistive switching mechanisms and performances is investigated. Three different grain morphologies, that is, “random network,” “columnar scaffold,” and “island‐like,” are realized in CeO2thin films. The devices with the three grain morphologies demonstrate vastly different resistive switching behaviors. The best overall resistive switching performance is shown in the devices with “columnar scaffold” morphology, where the vertical grain boundaries extending through the film facilitate the generation of oxygen vacancies as well as their migration under external bias. The observation of both interfacial and filamentary switching modes only in the devices with a “columnar scaffold” morphology further confirms the contribution from grain boundaries. In contrast, the “random network” or “island‐like” structures result in excessive or insufficient oxygen vacancy concentration migration paths. The research provides design guidelines for grain boundary engineering of oxide‐based resistive switching materials to tune the resistive switching performances for memory and neuromorphic computing applications. 
    more » « less
  3. Abstract Oxygen vacancy is the most common type of point defects in functional oxides, and it is known to have profound influence on their properties. This is particularly true for ferroelectric oxides since their interaction with ferroelectric polarization often dictates the ferroelectric responses. Here, we study the influence of the concentration of oxygen vacancies on the stability of ferroelectric domain walls (DWs) in BiFeO3, a material with a relatively narrow bandgap among all perovskite oxides, which enables strong interactions among electronic charge carriers, oxygen vacancies, and ferroelectric domains. It is found that the electronic charge carriers in the absence of oxygen vacancies have essentially no influence on the spatial polarization distribution of the DWs due to their low concentrations. Upon increasing the concentration of oxygen vacancies, charge‐neutral DWs with an originally symmetric polarization distribution symmetric around the center of the wall can develop a strong asymmetry of the polarization field, which is mediated by the electrostatic interaction between polarization and electrons from the ionization of oxygen vacancies. Strongly charged head‐to‐head DWs that are unstable without oxygen vacancies can be energetically stabilized in the off‐stoichiometric BiFeO3−δwithδ∼ 0.02 where ionization of oxygen vacancies provides sufficient free electrons to compensate the bound charge at the wall. Our results delineate the electrostatic coupling of the ionic defects and the associated free electronic charge carriers with the bound charge in the vicinity of neutral and charged DWs in perovskite ferroelectrics. 
    more » « less
  4. We present a molecular dynamics study of the thermal transport properties of PbTe/PbSe (111) and PbTe/PbSe (100) interfaces at room temperature. The PbTe/PbSe heterostructures are obtained through simulations of the kinetic processes of direct bonding of PbTe and PbSe crystals. The atomic-scale dislocation core structures and the misfit dislocation networks in the heterostructures obtained in the simulations are found to closely match experimental data. Two types of heat transfer experiments are then simulated: a heat-sink heat-source experiment and an ultrashort heat pulse experiment. Thermal boundary resistance is calculated for three distinct interface types: coherent, semi-coherent, and semi-coherent with pinned dislocations. Both types of simulations consistently capture the significant role of the misfit dislocations on thermal resistance. The effect of the mobility of dislocations on thermal resistance is demonstrated for the first time through comparing the thermal boundary resistance of interfaces containing pinned dislocations and with those containing unpinned dislocations. In addition, the thermal boundary resistance is found to strongly depend on the length of the specimen and the area of the interface. 
    more » « less
  5. Lithium-rich oxychloride antiperovskites are promising solid electrolytes for enabling next-generation batteries. Here, we report a comprehensive study varying Li + concentrations in Li 3 OCl using ab initio molecular dynamics simulations. The simulations accurately capture the complex interactions between Li + vacancies ( V Li ′ ), the dominant mobile species in Li 3 OCl . The V Li ′ polarize and distort the host lattice, inducing additional non-vacancy-mediated diffusion mechanisms and correlated diffusion events that reduce the activation energy barrier at concentrations as low as 1.5% V Li ′ . Our analyses of discretized diffusion events in both space and time illustrate the critical interplay between correlated dynamics, polarization and local distortion in promoting ionic conductivity in Li 3 OCl . This article is part of the Theo Murphy meeting issue ‘Understanding fast-ion conduction in solid electrolytes’. 
    more » « less