Using hydrogen as a working fluid in cryocoolers can potentially benefit cryocooling technologies and hydrogen liquefaction. Moreover, in flow-through thermoacoustic systems, hydrogen can be efficiently cooled and undergo ortho-parahydrogen isomeric conversion, which is important for the efficient storage of cryogenic hydrogen. A traveling-wave regenerator is analyzed in this study, using the thermoacoustic theory with a superimposed mean flow and an empirical correlation for hydrogen isomer conversion. A regenerator with hydrogen fluid is shown to achieve higher performance in comparison with helium as the working fluid. However, the hydrogen system performance degrades at supercritical pressures and subcritical temperatures in compressed liquid states. In regenerators with mean flow, using hydrogen as the working fluid leads to higher cooling powers and efficiencies, but helium systems are able to achieve colder temperatures.
more »
« less
Temperature lowering of liquid nitrogen via injection of helium gas bubbles improves the generation of parahydrogen‐enriched gas
Abstract The para spin isomer of hydrogen gas possesses high nuclear spin order that can enhance the NMR signals of a variety of molecular species. Hydrogen is routinely enriched in the para spin state by lowering the gas temperature while flowing through a catalyst. Although parahydrogen enrichments approaching 100% are achievable near the H2liquefaction temperature of 20 K, many experimentalists operate at liquid nitrogen temperatures (77 K) due to the lower associated costs and overall simplicity of the parahydrogen generator. Parahydrogen that is generated at 77 K provides an enrichment value of ~51% of the para spin isomer; while useful, there are many applications that can benefit from low‐cost access to higher parahydrogen enrichments. Here, we introduce a method of improving parahydrogen enrichment values using a liquid nitrogen‐cooled generator that operates at temperatures less than 77 K. The boiling temperature of liquid nitrogen is lowered through internal evaporation into helium gas bubbles that are injected into the liquid. Changes to liquid nitrogen temperatures and parahydrogen enrichment values were monitored as a function of helium gas flow rate. The injected helium bubbles lowered the liquid nitrogen temperature to ~65.5 K, and parahydrogen enrichments of up to ~59% were achieved; this represents an ~16% improvement compared with the expected parahydrogen fraction at 77 K. This technique is simple to implement in standard liquid nitrogen‐cooled parahydrogen generators and may be of interest to a wide range of scientists that require a cost‐effective approach to improving parahydrogen enrichment values.
more »
« less
- Award ID(s):
- 2238852
- PAR ID:
- 10484305
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Magnetic Resonance in Chemistry
- Volume:
- 62
- Issue:
- 2
- ISSN:
- 0749-1581
- Format(s):
- Medium: X Size: p. 94-100
- Size(s):
- p. 94-100
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We studied luminescence accompanied an injection of the nitrogen-helium gas mixture after passing discharge into dense cold helium gas. Initially, when the experimental beaker was filled with superfluid helium and the nitrogen-helium gas was injected into bulk superfluid helium at T ≈ 1.5 K, the dominant band in the emission spectra was the α-group of nitrogen atoms. At these conditions, the nanoclusters of molecular nitrogen with high concentrations of stabilized nitrogen atoms were formed. When superfluid helium was evaporated from the beaker and the temperature at the bottom of the beaker was increased to T ≈ 20 K, we observed a drastic change in the luminescence spectra. The β-group of oxygen atoms was dominated in the luminescence spectra, and the emission of the α-group became small. At high temperatures (T ≈ 20 K), most of the nitrogen atoms recombine on the surface of N2 nanoclusters with the formation of excited nitrogen molecules. We explained the effect of the enhancement of β-group emission by effective energy transfer from excited nitrogen molecules to the stabilized impurity oxygen atom inside N2 nanoclusters.more » « less
-
Impurity-helium condensates (IHCs) formed by injecting the discharge products of gaseous mixtures of helium atoms and nitrogen molecules into bulk superfluid 4He at temperature 1.5 K, were studied by X-band electron spin resonance. IHCs consists of collections of N2 nanoclusters which form aerogel-like structure inside bulk HeII. It was found that N2 nanoclusters have a two shell structure, an outer shell which contains high concentration of stabilized N atoms and an interior shell with lower concentrations of N atoms. In this paper, we have studied the dependence of the shell structure of the N2 nanoclusters which compose the IHCs by varying the ratio of nitrogen to helium in the prepared gas mixture from 0.06 to 1%. The highest local concentration of N atoms in nanoclusters (1.2 ⋅ 1021 cm−3 ) was observed in the sample prepared from the gas mixture containing the lowest nitrogen admixture (0.06%). Additionally, the evolution of nanocluster structure was studied as the samples were drained of liquid helium (T ≤ 3.5 K) and warmed beyond the point of explosive recombination (3.5 K ≤ T ≤ 6.5 K).more » « less
-
We studied luminescence accompanied by an injection of nitrogen–krypton–helium gas mixtures after passing radiofrequency discharge into dense cold helium gas. In the cold helium gas N2–Kr nanoclusters were formed, with a core of Kr atoms and N2 molecules on the surface. Atomic nitrogen and oxygen resided in the N2 surface layers. When the temperature in the observation zone was in the range of 20–36 K, we observed enhanced emission of oxygen atom β-group and molecular nitrogen Vegard–Kaplan bands from N2–Kr nanoclusters. At these temperatures, nitrogen atoms efficiently recombine on the surface of nanoclusters with the formation of exited nitrogen molecules, leading to enhanced emission of Vegard–Kaplan bands. Simultaneously, the energy transfer from exited nitrogen molecules to the oxygen atoms enhanced O atom β-group emission.more » « less
-
The implementation of synthetic polymer membranes in gas separations, ranging from natural gas sweetening, hydrogen separation, helium recovery, carbon capture, oxygen/nitrogen enrichment, etc. , has stimulated the vigorous development of high-performance membrane materials. However, size-sieving types of synthetic polymer membranes are frequently subject to a trade-off between permeability and selectivity, primarily due to the lack of ability to boost fractional free volume while simultaneously controlling the micropore size distribution. Herein, we review recent research progress on microporosity manipulation in high-free-volume polymeric gas separation membranes and their gas separation performance, with an emphasis on membranes with hourglass-shaped or bimodally distributed microcavities. State-of-the-art strategies to construct tailorable and hierarchically microporous structures, microporosity characterization, and microcavity architecture that govern gas separation performance are systematically summarized.more » « less
An official website of the United States government
