Accurate and up-to-date digital road maps are the foundation of many mobile applications, such as navigation and autonomous driving. A manually-created map suffers from the high cost for creation and maintenance due to constant road network updating. Recently, the ubiquity of GPS devices in vehicular systems has led to an unprecedented amount of vehicle sensing data for map inference. Unfortunately, accurate map inference based on vehicle GPS is challenging for two reasons. First, it is challenging to infer complete road structures due to the sensing deviation, sparse coverage, and low sampling rate of GPS of a fleet of vehicles with similar mobility patterns, e.g., taxis. Second, a road map requires various road properties such as road categories, which is challenging to be inferred by just GPS locations of vehicles. In this paper, we design a map inference system called coMap by considering multiple fleets of vehicles with Complementary Mobility Features. coMap has two key components: a graph-based map sketching component, a learning-based map painting component. We implement coMap with the data from four type-aware vehicular sensing systems in one city, which consists of 18 thousand taxis, 10 thousand private vehicles, 6 thousand trucks, and 14 thousand buses. We conduct a comprehensive evaluation of coMap with two state-of-the-art baselines along with ground truth based on OpenStreetMap and a commercial map provider, i.e., Baidu Maps. The results show that (i) for the map sketching, our work improves the performance by 15.9%; (ii) for the map painting, our work achieves 74.58% of average accuracy on road category classification.
more »
« less
Extending Coverage of Stationary Sensing Systems with Mobile Sensing Systems for Human Mobility Modeling
Human mobility modeling has many applications in location-based services, mobile networking, city management, and epidemiology. Previous sensing approaches for human mobility are mainly categorized into two types: stationary sensing systems (e.g., surveillance cameras and toll booths) and mobile sensing systems (e.g., smartphone apps and vehicle tracking devices). However, stationary sensing systems only provide mobility information of human in limited coverage (e.g., camera-equipped roads) and mobile sensing systems only capture a limited number of people (e.g., people using a particular smartphone app). In this work, we design a novel system Mohen to model human mobility with a heterogeneous sensing system. The key novelty of Mohen is to fundamentally extend the sensing coverage of a large-scale stationary sensing system with a small-scale sensing system. Based on the evaluation on data from real-world urban sensing systems, our system outperforms them by 35% and achieves a competitive result to an Oracle method.
more »
« less
- Award ID(s):
- 1932223
- PAR ID:
- 10484328
- Publisher / Repository:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 4
- Issue:
- 3
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 21
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Data from the cellular network have been proved as one of the most promising way to understand large-scale human mobility for various ubiquitous computing applications due to the high penetration of cellphones and low collection cost. Existing mobility models driven by cellular network data suffer from sparse spatial-temporal observations because user locations are recorded with cellphone activities, e.g., calls, text, or internet access. In this paper, we design a human mobility recovery system called CellSense to take the sparse cellular billing data (CBR) as input and outputs dense continuous records to recover the sensing gap when using cellular networks as sensing systems to sense the human mobility. There is limited work on this kind of recovery systems at large scale because even though it is straightforward to design a recovery system based on regression models, it is very challenging to evaluate these models at large scale due to the lack of the ground truth data. In this paper, we explore a new opportunity based on the upgrade of cellular infrastructures to obtain cellular network signaling data as the ground truth data, which log the interaction between cellphones and cellular towers at signal levels (e.g., attaching, detaching, paging) even without billable activities. Based on the signaling data, we design a system CellSense for human mobility recovery by integrating collective mobility patterns with individual mobility modeling, which achieves the 35.3% improvement over the state-of-the-art models. The key application of our recovery model is to take regular sparse CBR data that a researcher already has, and to recover the missing data due to sensing gaps of CBR data to produce a dense cellular data for them to train a machine learning model for their use cases, e.g., next location prediction.more » « less
-
With the trend of vehicles becoming increasingly connected and potentially autonomous, vehicles are being equipped with rich sensing and communication devices. Various vehicular services based on shared real-time sensor data of vehicles from a fleet have been proposed to improve the urban efficiency, e.g., HD-live map, and traffic accident recovery. However, due to the high cost of data uploading (e.g., monthly fees for a cellular network), it would be impractical to make all well-equipped vehicles to upload real-time sensor data constantly. To better utilize these limited uploading resources and achieve an optimal road segment sensing coverage, we present a real-time sensing task scheduling framework, i.e., RISC, for Resource-Constraint modeling for urban sensing by scheduling sensing tasks of commercial vehicles with sensors based on the predictability of vehicles' mobility patterns. In particular, we utilize the commercial vehicles, including taxicabs, buses, and logistics trucks as mobile sensors to sense urban phenomena, e.g., traffic, by using the equipped vehicular sensors, e.g., dash-cam, lidar, automotive radar, etc. We implement RISC on a Chinese city Shenzhen with one-month real-world data from (i) a taxi fleet with 14 thousand vehicles; (ii) a bus fleet with 13 thousand vehicles; (iii) a truck fleet with 4 thousand vehicles. Further, we design an application, i.e., track suspect vehicles (e.g., hit-and-run vehicles), to evaluate the performance of RISC on the urban sensing aspect based on the data from a regular vehicle (i.e., personal car) fleet with 11 thousand vehicles. The evaluation results show that compared to the state-of-the-art solutions, we improved sensing coverage (i.e., the number of road segments covered by sensing vehicles) by 10% on average.more » « less
-
Urban environments pose significant challenges to pedestrian safety and mobility. This paper introduces a novel modular sensing framework for developing real-time, multimodal streetscape applications in smart cities. Prior urban sensing systems predominantly rely either on fixed data modalities or centralized data processing, resulting in limited flexibility, high latency, and superficial privacy protections. In contrast, our framework integrates diverse sensing modalities, including cameras, mobile IMU sensors, and wearables into a unified ecosystem leveraging edge-driven distributed analytics. The proposed modular architecture, supported by standardized APIs and message-driven communication, enables hyper-local sensing and scalable development of responsive pedestrian applications. A concrete application demonstrating multimodal pedestrian tracking is developed and evaluated. It is based on the cross-modal inference module, which fuses visual and mobile IMU sensor data to associate detected entities in the camera domain with their corresponding mobile device.We evaluate our framework’s performance in various urban sensing scenarios, demonstrating an online association accuracy of 75% with a latency of ≈39 milliseconds. Our results demonstrate significant potential for broader pedestrian safety and mobility scenarios in smart cities.more » « less
-
Human mobility models typically produce mobility data to capture human mobility patterns individually or collectively based on real-world observations or assumptions, which are essential for many use cases in research and practice, e.g., mobile networking, autonomous driving, urban planning, and epidemic control. However, most existing mobility models suffer from practical issues like unknown accuracy and uncertain parameters in new use cases because they are normally designed and verified based on a particular use case (e.g., mobile phones, taxis, or mobile payments). This causes significant challenges for researchers when they try to select a representative human mobility model with appropriate parameters for new use cases. In this paper, we introduce a MObility VERification framework called MOVER to systematically measure the performance of a set of representative mobility models including both theoretical and empirical models based on a diverse set of use cases with various measures. Based on a taxonomy built upon spatial granularity and temporal continuity, we selected four representative mobility use cases (e.g., the vehicle tracking system, the camera-based system, the mobile payment system, and the cellular network system) to verify the generalizability of the state-of-the-art human mobility models. MOVER methodically characterizes the accuracy of five different mobility models in these four use cases based on a comprehensive set of mobility measures and provide two key lessons learned: (i) For the collective level measures, the finer spatial granularity of the user cases, the better generalization of the theoretical models; (ii) For the individual-level measures, the lower periodic temporal continuity of the user cases, the theoretical models typically generalize better than the empirical models. The verification results can help the research community to select appropriate mobility models and parameters in different use cases.more » « less