Abstract Because internal alkenes are more challenging synthetic targets than terminal alkenes, metal‐catalyzed olefin mono‐transposition (i.e., positional isomerization) approaches have emerged to afford valuableE‐ orZ‐internal alkenes from their complementary terminal alkene feedstocks. However, the applicability of these methods has been hampered by lack of generality, commercial availability of precatalysts, and scalability. Here, we report a nickel‐catalyzed platform for the stereodivergentE/Z‐selective synthesis of internal alkenes at room temperature. Commercial reagents enable this one‐carbon transposition of terminal alkenes to valuableE‐ orZ‐internal alkenes via a Ni−H‐mediated insertion/elimination mechanism. Though the mechanistic regime is the same in both systems, the underlying pathways that lead to each of the active catalysts are distinct, with theZ‐selective catalyst forming from comproportionation of an oxidative addition complex followed by oxidative addition with substrate and theE‐selective catalyst forming from protonation of the metal by the trialkylphosphonium salt additive. In each case, ligand sterics and denticity control stereochemistry and prevent over‐isomerization.
more »
« less
A Hydride Migration Mechanism for the Mo‐Catalyzed Z‐2‐Selective Isomerization of Terminal Alkenes
The catalytic one-bond isomerization (transposition) of 1- alkenes is an emerging approach to Z-2-alkenes. Design of more selective catalysts would benefit from a mechanistic understanding of factors controlling Z selectivity. We propose here a reaction pathway for cis-Mo(CO)4(PCy3)(piperidine) (3), a precatalyst that shows high Z selectivity for transposition of alpha olefins (e.g., 1-octene to 2-octene, 18:1 Z:E at 74% conversion). Computational modeling of reaction pathways and isotopic labeling suggests the isomerization takes place via an allyl (1,3-hydride shift) pathway, where oxidative addition of fac- (CO)3Mo(PCy3)(η2-alkene) is followed by hydride migration from one position (cis to allyl C3 carbon) to another (cis to allyl C1 carbon) via hydride/CO exchanges. Calculated barriers for the hydride migration pathway are lower than explored alternative mechanisms (e.g., change of allyl hapticity, allyl rotation). To our knowledge, this is the first study to propose such a hydride migration in alkene isomerization.
more »
« less
- Award ID(s):
- 2154438
- PAR ID:
- 10484345
- Publisher / Repository:
- Wiley-VCH
- Date Published:
- Journal Name:
- ChemCatChem
- Volume:
- 15
- Issue:
- 23
- ISSN:
- 1867-3880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Catalytic site-selective hydroallylation of vinyl arenes and 1,3-dienes is reported. Transformations are promoted by a readily accessible bidentate carbodicarbene-rhodium complex and involve commercially available allyltrifluoroborates and an alco-hol. The reaction is applicable to vinyl arenes, and aryl or alkyl-substituted 1,3-dienes (30 examples). Allyl addition products are generated in 40–78% yield and in up to >98:2 site-selectivity. Reaction outcomes are consistent with the intermedi-acy of a Rh(III)-hydride generated by protonation of Rh(I) by an acid. A number of key mechanistic details of the reaction are presented: (1) Deuterium scrambling into the product and starting alkene indicates reversible Rh(III)–H migratory insertion. (2) A large primary kinetic isotope effect is observed. (3) With substituted allyltrifluoroborates (e.g., crotyl-BF3K) mixtures of site isomers are generated as a result of transmetalation followed by Rh-(allyl) complex equilibration; consequently, disproving outer-sphere addition of the allyl nucleophile to Rh(III)-(η3-allyl). (4) The stereochemical analysis of a cyclohexadiene allyl addition product supports a syn Rh(III)–hydride addition. (5) A Hammett plot shows a negative slope suggesting reductive elimination as the rate-determining step. Finally, utility is highlighted by a iodocyclization and cross metathesis.more » « less
-
null (Ed.)Isoprene is the most abundant non-methane hydrocarbon emitted into the Earth's atmosphere. Ozonolysis is an important atmospheric sink for isoprene, which generates reactive carbonyl oxide species (R 1 R 2 CO + O − ) known as Criegee intermediates. This study focuses on characterizing the catalyzed isomerization and adduct formation pathways for the reaction between formic acid and methyl vinyl ketone oxide (MVK-oxide), a four-carbon unsaturated Criegee intermediate generated from isoprene ozonolysis. syn -MVK-oxide undergoes intramolecular 1,4 H-atom transfer to form a substituted vinyl hydroperoxide intermediate, 2-hydroperoxybuta-1,3-diene (HPBD), which subsequently decomposes to hydroxyl and vinoxylic radical products. Here, we report direct observation of HPBD generated by formic acid catalyzed isomerization of MVK-oxide under thermal conditions (298 K, 10 torr) using multiplexed photoionization mass spectrometry. The acid catalyzed isomerization of MVK-oxide proceeds by a double hydrogen-bonded interaction followed by a concerted H-atom transfer via submerged barriers to produce HPBD and regenerate formic acid. The analogous isomerization pathway catalyzed with deuterated formic acid (D 2 -formic acid) enables migration of a D atom to yield partially deuterated HPBD (DPBD), which is identified by its distinct mass ( m / z 87) and photoionization threshold. In addition, bimolecular reaction of MVK-oxide with D 2 -formic acid forms a functionalized hydroperoxide adduct, which is the dominant product channel, and is compared to a previous bimolecular reaction study with normal formic acid. Complementary high-level theoretical calculations are performed to further investigate the reaction pathways and kinetics.more » « less
-
Herein we report an experimental and computational study of a family of four coordinated 14-electron complexes of Rh( iii ) devoid of agostic interactions. The complexes [X–Rh(κ 3 ( P,Si,Si )PhP( o -C 6 H 4 CH 2 Si i Pr 2 ) 2 ], where X = Cl (Rh-1), Br (Rh-2), I (Rh-3), OTf (Rh-4), Cl·GaCl 3 (Rh-5); derive from a bis(silyl)- o -tolylphosphine with isopropyl substituents on the Si atoms. All five complexes display a sawhorse geometry around Rh and exhibit similar spectroscopic and structural properties. The catalytic activity of these complexes and [Cl–Ir(κ 3 ( P,Si,Si )PhP( o -C 6 H 4 CH 2 Si i Pr 2 ) 2 ], Ir-1, in styrene and aliphatic alkene functionalizations with hydrosilanes is disclosed. We show that Rh-1 catalyzes effectively the dehydrogenative silylation of styrene with Et 3 SiH in toluene while it leads to hydrosilylation products in acetonitrile. Rh-1 is an excellent catalyst in the sequential isomerization/hydrosilylation of terminal and remote aliphatic alkenes with Et 3 SiH including hexene isomers, leading efficiently and selectively to the terminal anti-Markonikov hydrosilylation product in all cases. With aliphatic alkenes, no hydrogenation products are observed. Conversely, catalysis of the same hexene isomers by Ir-1 renders allyl silanes, the tandem isomerization/dehydrogenative silylation products. A mechanistic proposal is made to explain the catalysis with these M( iii ) complexes.more » « less
-
Abstract Chemo-switchable catalytic [2+2+2] cycloaddition of alkenes with formaldimines is reported. Bis(tosylamido)methane (BTM) and 1,2-ditosyl-1,2-diazetidine (DTD), two bench-stable precursors for highly reactive tosylformaldimine, have been identified to be effective. BTM worked as a selective releaser of the formaldimine for catalytic [2+2+2] reactions toward hexahydropyrimidine products via a presumable ‘imine–alkene–imine’ addition. A unique catalytic retro-[2+2] reaction of DTD was used and has enabled a proposed ‘imine–alkene–alkene’ pathway with high chemoselectivity for the synthesis of 2,4-diarylpiperidine derivatives. The two alternative processes are catalyzed by the simple and environmentally benign catalysts InCl3 and FeBr2, respectively.more » « less
An official website of the United States government

