skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low-degree testing over grids
We study the question of local testability of low (constant) degree functions from a product domain 𝒮_1 × … × 𝒮_n to a field 𝔽, where 𝒮_i ⊆ 𝔽 can be arbitrary constant sized sets. We show that this family is locally testable when the grid is "symmetric". That is, if 𝒮_i = 𝒮 for all i, there is a probabilistic algorithm using constantly many queries that distinguishes whether f has a polynomial representation of degree at most d or is Ω(1)-far from having this property. In contrast, we show that there exist asymmetric grids with |𝒮_1| = ⋯ = |𝒮_n| = 3 for which testing requires ω_n(1) queries, thereby establishing that even in the context of polynomials, local testing depends on the structure of the domain and not just the distance of the underlying code. The low-degree testing problem has been studied extensively over the years and a wide variety of tools have been applied to propose and analyze tests. Our work introduces yet another new connection in this rich field, by building low-degree tests out of tests for "junta-degrees". A function f:𝒮_1 × ⋯ × 𝒮_n → 𝒢, for an abelian group 𝒢 is said to be a junta-degree-d function if it is a sum of d-juntas. We derive our low-degree test by giving a new local test for junta-degree-d functions. For the analysis of our tests, we deduce a small-set expansion theorem for spherical/hamming noise over large grids, which may be of independent interest.  more » « less
Award ID(s):
2152413
PAR ID:
10484391
Author(s) / Creator(s):
; ;
Editor(s):
Megow, Nicole; Smith, Adam
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Journal Name:
Proceedings in Informatics (LIPIcs):Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)
Subject(s) / Keyword(s):
Property testing Low-degree testing Small-set expansion Local testing Theory of computation → Probabilistic computation
Format(s):
Medium: X
Location:
Atlanta, GA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Iwata, Satoru; Kakimura, Naonori (Ed.)
    In a regular PCP the verifier queries each proof symbol in the same number of tests. This number is called the degree of the proof, and it is at least 1/(sq) where s is the soundness error and q is the number of queries. It is incredibly useful to have regularity and reduced degree in PCP. There is an expander-based transformation by Papadimitriou and Yannakakis that transforms any PCP with a constant number of queries and constant soundness error to a regular PCP with constant degree. There are also transformations for low error projection and unique PCPs. Other PCPs are constructed especially to be regular. In this work we show how to regularize and reduce degree of PCPs with a possibly large number of queries and low soundness error. As an application, we prove NP-hardness of an unweighted variant of the collective minimum monotone satisfying assignment problem, which was introduced by Hirahara (FOCS'22) to prove NP-hardness of MCSP^* (the partial function variant of the Minimum Circuit Size Problem) under randomized reductions. We present a simplified proof and sufficient conditions under which MCSP^* is NP-hard under the standard notion of reduction: MCSP^* is NP-hard under deterministic polynomial-time many-one reductions if there exists a function in E that satisfies certain direct sum properties. 
    more » « less
  2. null (Ed.)
    The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We find tight or nearly tight bounds on the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following. k-Distinctness: For any constant k, the approximate degree and quantum query complexity of the k-distinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of k-distinctness is O(n3/4−1/(2k+2−4)). Image size testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n]→[n] is Ω~(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. k-Junta testing: A tight Ω~(k1/2) lower bound for k-junta testing, answering the main open question of Ambainis et al. (SODA 2016). Statistical distance from uniform: A tight Ω~(n1/2) lower bound for approximating the statistical distance of a distribution from uniform, answering the main question left open by Bravyi et al. (STACS 2010 and IEEE Trans. Inf. Theory 2011). Shannon entropy: A tight Ω~(n1/2) lower bound for approximating Shannon entropy up to a certain additive constant, answering a question of Li and Wu (2017). Surjectivity: The approximate degree of the surjectivity function is Ω~(n3/4). The best prior lower bound was Ω(n2/3). Our result matches an upper bound of O~(n3/4) due to Sherstov (STOC 2018), which we reprove using different techniques. The quantum query complexity of this function is known to be Θ(n) (Beame and Machmouchi, Quantum Inf. Comput. 2012 and Sherstov, FOCS 2015). Our upper bound for surjectivity introduces new techniques for approximating Boolean functions by low-degree polynomials. Our lower bounds are proved by significantly refining techniques recently introduced by Bun and Thaler (FOCS 2017). 
    more » « less
  3. A Boolean {\em $$k$$-monotone} function defined over a finite poset domain $${\cal D}$$ alternates between the values $$0$$ and $$1$$ at most $$k$$ times on any ascending chain in $${\cal D}$$. Therefore, $$k$$-monotone functions are natural generalizations of the classical {\em monotone} functions, which are the {\em $$1$$-monotone} functions. Motivated by the recent interest in $$k$$-monotone functions in the context of circuit complexity and learning theory, and by the central role that monotonicity testing plays in the context of property testing, we initiate a systematic study of $$k$$-monotone functions, in the property testing model. In this model, the goal is to distinguish functions that are $$k$$-monotone (or are close to being $$k$$-monotone) from functions that are far from being $$k$$-monotone. Our results include the following: \begin{enumerate} \item We demonstrate a separation between testing $$k$$-monotonicity and testing monotonicity, on the hypercube domain $$\{0,1\}^d$$, for $$k\geq 3$$; \item We demonstrate a separation between testing and learning on $$\{0,1\}^d$$, for $$k=\omega(\log d)$$: testing $$k$$-monotonicity can be performed with $$2^{O(\sqrt d \cdot \log d\cdot \log{1/\eps})}$$ queries, while learning $$k$$-monotone functions requires $$2^{\Omega(k\cdot \sqrt d\cdot{1/\eps})}$$ queries (Blais et al. (RANDOM 2015)). \item We present a tolerant test for functions $$f\colon[n]^d\to \{0,1\}$$ with complexity independent of $$n$$, which makes progress on a problem left open by Berman et al. (STOC 2014). \end{enumerate} Our techniques exploit the testing-by-learning paradigm, use novel applications of Fourier analysis on the grid $$[n]^d$, and draw connections to distribution testing techniques. 
    more » « less
  4. We prove that the most natural low-degree test for polynomials over finite fields is “robust” in the high-error regime for linear-sized fields. Specifically we consider the “local” agreement of a function $$f:\mathbb{F}_{q}^{m}\rightarrow \mathbb{F}_{q}$$ from the space of degree-d polynomials, i.e., the expected agreement of the function from univariate degree-d polynomials over a randomly chosen line in $$\mathbb{F}_{q}^{m}$$, and prove that if this local agreement is $$\varepsilon\geq\Omega((d/q)^{\tau}))$$ for some fixed $$\tau > 0$$, then there is a global degree-d polynomial $$Q:\mathbb{F}_{q}^{m}\rightarrow \mathbb{F}_{q}$$ with agreement nearly $$\varepsilon$$ with $$f$$. This settles a long-standing open question in the area of low-degree testing, yielding an $O(d)$ -query robust test in the “high-error” regime (i.e., when $$\varepsilon < 1/2)$$. The previous results in this space either required $$\varepsilon > 1/2$$ (Polishchuk & Spielman, STOC 1994), or $$q=\Omega(d^{4})$$ (Arora & Sudan, Combinatorica 2003), orneeded to measure local distance on 2-dimensional “planes” rather than one-dimensional lines leading to $$\Omega(d^{2})$$ -query complexity (Raz & Safra, STOC 1997). Our analysis follows the spirit of most previous analyses in first analyzing the low-variable case $(m=O(1))$ and then “boot-strapping” to general multivariate settings. Our main technical novelty is a new analysis in the bivariate setting that exploits a previously known connection between multivariate factorization and finding (or testing) low-degree polynomials, in a non “black-box” manner. This connection was used roughly in a black-box manner in the work of Arora & Sudan — and we show that opening up this black box and making some delicate choices in the analysis leads to our essentially optimal analysis. A second contribution is a bootstrapping analysis which manages to lift analyses for $m=2$ directly to analyses for general $$m$$, where previous works needed to work with $m=3$ or $m=4$ — arguably this bootstrapping is significantly simpler than those in prior works. 
    more » « less
  5. We prove that the most natural low-degree test for polynomials over finite fields is “robust” in the high-error regime for linear-sized fields. Specifically we consider the “local” agreement of a function $$f:\mathbb{F}_{q}^{m}\rightarrow \mathbb{F}_{q}$$ from the space of degree-d polynomials, i.e., the expected agreement of the function from univariate degree-d polynomials over a randomly chosen line in $$\mathbb{F}_{q}^{m}$$, and prove that if this local agreement is $$\varepsilon\geq\Omega((d/q)^{\tau}))$$ for some fixed $$\tau > 0$$, then there is a global degree-d polynomial $$Q:\mathbb{F}_{q}^{m}\rightarrow \mathbb{F}_{q}$$ with agreement nearly $$\varepsilon$$ with $$f$$. This settles a long-standing open question in the area of low-degree testing, yielding an $O(d)$ -query robust test in the “high-error” regime (i.e., when $$\varepsilon < 1/2)$$. The previous results in this space either required $$\varepsilon > 1/2$$ (Polishchuk & Spielman, STOC 1994), or $$q=\Omega(d^{4})$$ (Arora & Sudan, Combinatorica 2003), orneeded to measure local distance on 2-dimensional “planes” rather than one-dimensional lines leading to $$\Omega(d^{2})$$ -query complexity (Raz & Safra, STOC 1997). Our analysis follows the spirit of most previous analyses in first analyzing the low-variable case $(m=O(1))$ and then “boot-strapping” to general multivariate settings. Our main technical novelty is a new analysis in the bivariate setting that exploits a previously known connection between multivariate factorization and finding (or testing) low-degree polynomials, in a non “black-box” manner. This connection was used roughly in a black-box manner in the work of Arora & Sudan — and we show that opening up this black box and making some delicate choices in the analysis leads to our essentially optimal analysis. A second contribution is a bootstrapping analysis which manages to lift analyses for $m=2$ directly to analyses for general $$m$$, where previous works needed to work with $m=3$ or $m=4$ — arguably this bootstrapping is significantly simpler than those in prior works. 
    more » « less