skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Nonlinear Arrhenius behavior of self-diffusion in β−Ti and Mo
While anomalous diffusion coefficients with non-Arrhenius-like temperature dependence are observed in a number of metals, a conclusive comprehensive framework of explanation has not been brought forward to date. Here, we use first-principles calculations based on density functional theory to calculate self-diffusion coefficients in the bcc metals Mo and β-Ti by coupling quasiharmonic transition state theory and large-displacement phonon calculations and show that anharmonicity from thermal expansion is the major reason for the anomalous temperature dependence. We use a modified Debye approach to quantify the thermal expansion over the entire temperature range and introduce a method to relax the vacancy structure in a mechanically unstable crystal such as β-Ti. The effect of thermal expansion is found to be crucial for the nonlinear, non-Arrhenius “anomalous” self-diffusion in both bcc systems, with β-Ti showing a 60% larger relative nonlinearity parameter than Mo. Our results point to temperature dependence in the diffusion prefactor from thermal expansion as the major origin of anomalous self-diffusion. The methodology proposed for β-Ti is general and simple enough to be applicable to other mechanically unstable crystals.  more » « less
Award ID(s):
1904245
PAR ID:
10484680
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Materials
Volume:
6
Issue:
6
ISSN:
2475-9953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ferritic-martensitic steels, such as T91, are candidate materials for high-temperature applications, including superheaters, heat exchangers, and advanced nuclear reactors. Considering these alloys’ wide applications, an atomistic understanding of the underlying mechanisms responsible for their excellent mechano-chemical properties is crucial. Here, we developed a modified embedded-atom method (MEAM) potential for the Fe-Cr-Si-Mo quaternary alloy system—i.e., four major elements of T91—using a multi-objective optimization approach to fit thermomechanical properties reported using density functional theory (DFT) calculations and experimental measurements. Elastic constants calculated using the proposed potential for binary interactions agreed well with ab initio calculations. Furthermore, the computed thermal expansion and self-diffusion coefficients employing this potential are in good agreement with other studies. This potential will offer insightful atomistic knowledge to design alloys for use in harsh environments. 
    more » « less
  2. Abstract Energy efficiency is motivating the search for new high-temperature (high-T) metals. Some new body-centered-cubic (BCC) random multicomponent “high-entropy alloys (HEAs)” based on refractory elements (Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr) possess exceptional strengths at high temperatures but the physical origins of this outstanding behavior are not known. Here we show, using integrated in-situ neutron-diffraction (ND), high-resolution transmission electron microscopy (HRTEM), and recent theory, that the high strength and strength retention of a NbTaTiV alloy and a high-strength/low-density CrMoNbV alloy are attributable to edge dislocations. This finding is surprising because plastic flows in BCC elemental metals and dilute alloys are generally controlled by screw dislocations. We use the insight and theory to perform a computationally-guided search over 10 7 BCC HEAs and identify over 10 6 possible ultra-strong high-T alloy compositions for future exploration. 
    more » « less
  3. We characterize perovskite TiF3, a material which is reported to display significant negative thermal expansion at elevated temperatures above its cubic-to-rhombohedral structural phase transition at 330 K. We find the optical response favors an insulating state in both structural phases, which we show can be produced in density functional theory calculations only through the introduction of an on-site Coulomb repulsion. Analysis of the magnetic susceptibility data gives a S = 21 local moment per Ti+3 ion and an antiferromagnetic exchange coupling. Together, these results show that TiF3 is a strongly correlated electron system, a fact which constrains possible mechanisms of strong negative thermal expansion in the Sc1−x Tix F3 system. We consider the relative strength of the Jahn-Teller and electric dipole interactions in driving the structural transition. 
    more » « less
  4. The central exclusive production of charged-hadron pairs in p p collisions at a center-of-mass energy of 13 TeV is examined, based on data collected in a special high- β * run of the LHC. The nonresonant continuum processes are studied with the invariant mass of the centrally produced two-pion system in the resonance-free region, m π + π < 0.7 or m π + π > 1.8 GeV . Differential cross sections as functions of the azimuthal angle between the surviving protons, squared exchanged four-momenta, and m π + π are measured in a wide region of scattered proton transverse momenta, between 0.2 and 0.8 GeV, and for pion rapidities | y | < 2 . A rich structure of interactions related to double-pomeron exchange is observed. A parabolic minimum in the distribution of the two-proton azimuthal angle is observed for the first time. It can be interpreted as an effect of additional pomeron exchanges between the protons from the interference between the bare and the rescattered amplitudes. After model tuning, various physical quantities are determined that are related to the pomeron cross section, proton-pomeron and meson-pomeron form factors, pomeron trajectory and intercept, and coefficients of diffractive eigenstates of the proton. © 2024 CERN, for the CMS and TOTEMs Collaboration2024CERN 
    more » « less
  5. Refractory high-entropy alloys (RHEAs) are strong candidates for use in high-temperature engineering applications. As such, the thermodynamic properties as a function of temperature for a variety of RHEA systems need to be studied. In the present work, thermodynamic quantities such as entropy, enthalpy, heat capacity at constant volume, and linear thermal expansion are calculated for three quaternary and three quinary single-phase, BCC RHEAs: AlMoNbV, NbTaTiV, NbTaTiZr, AlNbTaTiV, HfNbTaTiZr, and MoNbTaVW. First-principle calculations based on density functional theory are used for the calculations, and special quasirandom structures (SQSs) are used to represent the random solid solution nature of the RHEAs. A code for the finite temperature thermodynamic properties using the Debye-Grüneisen model is written and employed. For the first time, the finite temperature thermodynamic properties of all 24 atomic configuration permutations of a quaternary RHEA are calculated. At most, 1.7% difference is found between the resulting properties as a function of atomic configuration, indicating that the atomic configuration of the SQS has little effect on the calculated thermodynamic properties. The behavior of thermodynamic properties among the RHEAs studied is discussed based on valence electron concentration and atomic size. Among the quaternary RHEAs studied, namely AlMoNbV, NbTaTiZr, and NbTaTiV, it is found that the presence of Zr contributes to higher entropy. Additionally, at lower temperatures, Zr contributes to higher heat capacity and thermal expansion compared to the alloys without Zr, possibly due to its valence electron concentration. At higher temperatures, Al contributes to higher heat capacity and thermal expansion, possibly due its ductility. Among the quinary systems, the presence of Mo, W, and/or V causes the RHEA to have a lower thermal expansion than the other systems studied. Finally, when comparing the systems with the NbTaTi core, the addition of Al increases thermal expansion, while the removal of Zr lowers the thermal expansion. 
    more » « less