skip to main content

Title: Nonlinear Arrhenius behavior of self-diffusion in β−Ti and Mo
While anomalous diffusion coefficients with non-Arrhenius-like temperature dependence are observed in a number of metals, a conclusive comprehensive framework of explanation has not been brought forward to date. Here, we use first-principles calculations based on density functional theory to calculate self-diffusion coefficients in the bcc metals Mo and β-Ti by coupling quasiharmonic transition state theory and large-displacement phonon calculations and show that anharmonicity from thermal expansion is the major reason for the anomalous temperature dependence. We use a modified Debye approach to quantify the thermal expansion over the entire temperature range and introduce a method to relax the vacancy structure in a mechanically unstable crystal such as β-Ti. The effect of thermal expansion is found to be crucial for the nonlinear, non-Arrhenius “anomalous” self-diffusion in both bcc systems, with β-Ti showing a 60% larger relative nonlinearity parameter than Mo. Our results point to temperature dependence in the diffusion prefactor from thermal expansion as the major origin of anomalous self-diffusion. The methodology proposed for β-Ti is general and simple enough to be applicable to other mechanically unstable crystals.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ferritic-martensitic steels, such as T91, are candidate materials for high-temperature applications, including superheaters, heat exchangers, and advanced nuclear reactors. Considering these alloys’ wide applications, an atomistic understanding of the underlying mechanisms responsible for their excellent mechano-chemical properties is crucial. Here, we developed a modified embedded-atom method (MEAM) potential for the Fe-Cr-Si-Mo quaternary alloy system—i.e., four major elements of T91—using a multi-objective optimization approach to fit thermomechanical properties reported using density functional theory (DFT) calculations and experimental measurements. Elastic constants calculated using the proposed potential for binary interactions agreed well with ab initio calculations. Furthermore, the computed thermal expansion and self-diffusion coefficients employing this potential are in good agreement with other studies. This potential will offer insightful atomistic knowledge to design alloys for use in harsh environments. 
    more » « less
  2. Heterogeneous bonding between metals and ceramics is of significant relevance to a wide range of applications in the fields of industry, defense, and aerospace. Metal/ceramic bonding can be used in various specific part applications such as vacuum tubes, automotive use of ceramic rotors, and rocket igniter bodies. However, the bonding of ceramic to metal has been challenging mainly due to (1) the low wettability of ceramics, on which the adhesion of molten adhesive bonders is limited and (2) the large difference between the coefficients of thermal expansion (CTE) of the two dissimilar bonded materials, which develops significant mechanical stresses at the interface and potentially leads to mechanical failures. Vapor-phase deposition is a widely used thin film processing technique in both academic research laboratories and manufacturing industries. Since vapor phase coatings do not require wettability or hydrophobicity, a uniform and strongly adherent layer is deposited over virtually any substrate, including ceramics. In this presentation, we report on the effect of vapor phase-deposited interfacial metal layers on the mechanical properties of bonding between stainless steel and Zerodur (lithium aluminosilicate-based glass ceramic). Direct-current magnetron sputtering was utilized to deposit various thin interfacial layers containing Ti, Cu, or Sn. In addition, to minimize the unfavorable stress at the bonded interface due to the large CTE difference, a low temperature allow solder, that can be chemically and mechanically activated at temperatures of approximately 200 °C, was used. The solder is made from a composite of Ti-Sn-Ce-In. A custom-built fixture and universal testing machine were used to evaluate the bonding strength in shear, which was monitored in-situ with LabView throughout the measurement. The shear strength of the bonding between stainless steel and Zerodur was systematically characterized as a function of interfacial metal and metal processing temperature during sputter depositions. Maximum shear strength of the bonding of 4.36 MPa was obtained with Cu interfacial layers, compared to 3.53 MPa from Sn and 3.42 MPa from Ti adhesion promoting layers. These bonding strengths are significantly higher than those (~0.05 MPa) of contacts without interfacial reactive thin metals. The fracture surface microstructures are presented as well. It was found that the point of failure, when Cu interfacial layers were used, was between the coated Cu film and alloy bonder. This varied from the Sn and Ti interfacial layers where the main point of failure was between the interfacial film and Zerodur interface. The findings of the effect of thin adhesion promoting metal layers and failure behaviors may be of importance to some metal/ceramic heterogeneous bonding studies that require high bonding strength and low residual stresses at the bonding interface. The authors gratefully acknowledge the financial support of the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. 
    more » « less
  3. The bonding of ceramic to metal has been challenging due to the dissimilar nature of the materials, particularly different surface properties and the coefficients of thermal expansion (CTE). To address the issues, gas phase-processed thin metal films were inserted at the metal/ceramic interface to modify the ceramic surface and, therefore, promote heterogeneous bonding. In addition, an alloy bonder that is mechanically and chemically activated at as low as 220 °C with reactive metal elements was utilized to bond the metal and ceramic. Stainless steel (SS)/Zerodur is selected as the metal/ceramic bonding system where Zerodur is chosen due to the known low CTE. The low-temperature process and the low CTE of Zerodur are critical to minimizing the undesirable stress evolution at the bonded interface. Sputtered Ti, Sn, and Cu (300 nm) were deposited on the Zerodur surface, and then dually activated molten alloy bonders were spread on both surfaces of the coated Zerodur and SS at 220 °C in air. The shear stress of the bonding was tested with a custom-designed fixture in a universal testing machine and was recorded through a strain indicator. The mechanical strength and the bonded surface property were compared as a function of interfacial metal thin film and analyzed through thermodynamic interfacial stability/instability calculations. A maximum shear strength of bonding of 4.36 MPa was obtained with Cu interfacial layers, while that of Sn was 3.53 MPa and that of Ti was 3.42 MPa. These bonding strengths are significantly higher than those (∼0.04 MPa) of contacts without interfacial reactive thin metals.

    more » « less
  4. Abstract Energy efficiency is motivating the search for new high-temperature (high-T) metals. Some new body-centered-cubic (BCC) random multicomponent “high-entropy alloys (HEAs)” based on refractory elements (Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr) possess exceptional strengths at high temperatures but the physical origins of this outstanding behavior are not known. Here we show, using integrated in-situ neutron-diffraction (ND), high-resolution transmission electron microscopy (HRTEM), and recent theory, that the high strength and strength retention of a NbTaTiV alloy and a high-strength/low-density CrMoNbV alloy are attributable to edge dislocations. This finding is surprising because plastic flows in BCC elemental metals and dilute alloys are generally controlled by screw dislocations. We use the insight and theory to perform a computationally-guided search over 10 7 BCC HEAs and identify over 10 6 possible ultra-strong high-T alloy compositions for future exploration. 
    more » « less
  5. Abstract

    Nanostructured noble metals such as gold exhibit unique size‐dependent plasmonic and optical properties which is an enabling factor for designing nanophotonic devices. However, for its deployment in high temperature applications such as solar thermal energy harvesting and optothermal conversion, it requires understanding of its temperature dependent optical properties. This paper investigates the in situ specular reflectance of nanoporous gold (NPG) thin films in the wavelength range between 400 and 1000 nm at temperatures ranging from 25 to 500 °C via a home‐built fiber‐based optical spectrometer. During heating, the NPG's ligaments coalesce from an initial size of 39 ± 12 nm to a final size of up to 299 ± 114 nm, and its ligament scales with temperature closely matching an Arrhenius dependence. The surface roughness of NPG is empirically correlated to ligament size and temperature to allow for the theoretical prediction of the relative specular reflectance using scattering coefficients and effective medium theory which closely matches the experimental results. These results represent a step forward in using in situ optical spectroscopic methods to monitor the ligament size evolution of NPG thin‐films and to understand its stability and optical properties for applications at elevated temperatures.

    more » « less