skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Superhuman Fairness
The fairness of machine learning-based decisions has become an increasingly important focus in the design of supervised machine learning methods. Most fairness approaches optimize a specified trade-off between performance measure(s) (e.g., accuracy, log loss, or AUC) and fairness measure(s) (e.g., demographic parity, equalized odds). This begs the question: are the right performance-fairness trade-offs being specified? We instead recast fair machine learning as an imitation learning task by introducing superhuman fairness, which seeks to simultaneously outperform human decisions on multiple predictive performance and fairness measures. We demonstrate the benefits of this approach given suboptimal decisions.  more » « less
Award ID(s):
1939743
PAR ID:
10484981
Author(s) / Creator(s):
; ;
Publisher / Repository:
International Conference on Machine Learning
Date Published:
Journal Name:
International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Machine learning models are increasingly being used in important decision-making software such as approving bank loans, recommending criminal sentencing, hiring employees, and so on. It is important to ensure the fairness of these models so that no discrimination is made based on protected attribute (e.g., race, sex, age) while decision making. Algorithms have been developed to measure unfairness and mitigate them to a certain extent. In this paper, we have focused on the empirical evaluation of fairness and mitigations on real-world machine learning models. We have created a benchmark of 40 top-rated models from Kaggle used for 5 different tasks, and then using a comprehensive set of fairness metrics, evaluated their fairness. Then, we have applied 7 mitigation techniques on these models and analyzed the fairness, mitigation results, and impacts on performance. We have found that some model optimization techniques result in inducing unfairness in the models. On the other hand, although there are some fairness control mechanisms in machine learning libraries, they are not documented. The mitigation algorithm also exhibit common patterns such as mitigation in the post-processing is often costly (in terms of performance) and mitigation in the pre-processing stage is preferred in most cases. We have also presented different trade-off choices of fairness mitigation decisions. Our study suggests future research directions to reduce the gap between theoretical fairness aware algorithms and the software engineering methods to leverage them in practice. 
    more » « less
  2. Machine learning models are increasingly being used in important decision-making software such as approving bank loans, recommending criminal sentencing, hiring employees, and so on. It is important to ensure the fairness of these models so that no discrimination is made between different groups in a protected attribute (e.g., race, sex, age) while decision making. Algorithms have been developed to measure unfairness and mitigate them to a certain extent. In this paper, we have focused on the empirical evaluation of fairness and mitigations on real-world machine learning models. We have created a benchmark of 40 top-rated models from Kaggle used for 5 different tasks, and then using a comprehensive set of fairness metrics evaluated their fairness. Then, we have applied 7 mitigation techniques on these models and analyzed the fairness, mitigation results, and impacts on performance. We have found that some model optimization techniques result in inducing unfairness in the models. On the other hand, although there are some fairness control mechanisms in machine learning libraries, they are not documented. The mitigation algorithm also exhibit common patterns such as mitigation in the post-processing is often costly (in terms of performance) and mitigation in the pre-processing stage is preferred in most cases. We have also presented different trade-off choices of fairness mitigation decisions. Our study suggests future research directions to reduce the gap between theoretical fairness aware algorithms and the software engineering methods to leverage them in practice. 
    more » « less
  3. Machine learning technology has become ubiquitous, but, unfortunately, often exhibits bias. As a consequence, disparate stakeholders need to interact with and make informed decisions about using machine learning models in everyday systems. Visualization technology can support stakeholders in understanding and evaluating trade-offs between, for example, accuracy and fairness of models. This paper aims to empirically answer “Can visualization design choices affect a stakeholder's perception of model bias, trust in a model, and willingness to adopt a model?” Through a series of controlled, crowd-sourced experiments with more than 1,500 participants, we identify a set of strategies people follow in deciding which models to trust. Our results show that men and women prioritize fairness and performance differently and that visual design choices significantly affect that prioritization. For example, women trust fairer models more often than men do, participants value fairness more when it is explained using text than as a bar chart, and being explicitly told a model is biased has a bigger impact than showing past biased performance. We test the generalizability of our results by comparing the effect of multiple textual and visual design choices and offer potential explanations of the cognitive mechanisms behind the difference in fairness perception and trust. Our research guides design considerations to support future work developing visualization systems for machine learning. 
    more » « less
  4. We propose a simple yet effective solution to tackle the often-competing goals of fairness and utility in classification tasks. While fairness ensures that the model's predictions are unbiased and do not discriminate against any particular group or individual, utility focuses on maximizing the model's predictive performance. This work introduces the idea of leveraging aleatoric uncertainty (e.g., data ambiguity) to improve the fairness-utility trade-off. Our central hypothesis is that aleatoric uncertainty is a key factor for algorithmic fairness and samples with low aleatoric uncertainty are modeled more accurately and fairly than those with high aleatoric uncertainty. We then propose a principled model to improve fairness when aleatoric uncertainty is high and improve utility elsewhere. Our approach first intervenes in the data distribution to better decouple aleatoric uncertainty and epistemic uncertainty. It then introduces a fairness-utility bi-objective loss defined based on the estimated aleatoric uncertainty. Our approach is theoretically guaranteed to improve the fairness-utility trade-off. Experimental results on both tabular and image datasets show that the proposed approach outperforms state-of-the-art methods w.r.t. the fairness-utility trade-off and w.r.t. both group and individual fairness metrics. This work presents a fresh perspective on the trade-off between utility and algorithmic fairness and opens a key avenue for the potential of using prediction uncertainty in fair machine learning. 
    more » « less
  5. null (Ed.)
    Algorithmic fairness is a major concern in recent years as the influence of machine learning algorithms becomes more widespread. In this paper, we investigate the issue of algorithmic fairness from a network-centric perspective. Specifically, we introduce a novel yet intuitive function known as fairness perception and provide an axiomatic approach to analyze its properties. Using a peer-review network as a case study, we also examine its utility in terms of assessing the perception of fairness in paper acceptance decisions. We show how the function can be extended to a group fairness metric known as fairness visibility and demonstrate its relationship to demographic parity. We also discuss a potential pitfall of the fairness visibility measure that can be exploited to mislead individuals into perceiving that the algorithmic decisions are fair. We demonstrate how the problem can be alleviated by increasing the local neighborhood size of the fairness perception function. 
    more » « less