skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Context matters in ecological forecasting: Lessons in predicting species distributions
Forecasting the future state of a species is a tricky process, as there are numerous hidden factors that influence species trajectories in addition to the obvious unknowns about the future state of the planet. We echo the guidance of Clare et al. (2024) to use near‐term and long‐term forecasting in complementary ways. Near‐term forecasts can be used to guide specific management and conservation actions, which can be updated as new data and evidence are collected. Long‐term forecasts can be used to characterize uncertainty further into the future, which can help guide longstanding conservation planning and legislative actions that are based on such uncertainty in possible future outcomes.  more » « less
Award ID(s):
1954406 2213565
PAR ID:
10485332
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
30
Issue:
1
ISSN:
1354-1013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Near‐term freshwater forecasts, defined as sub‐daily to decadal future predictions of a freshwater variable with quantified uncertainty, are urgently needed to improve water quality management as freshwater ecosystems exhibit greater variability due to global change. Shifting baselines in freshwater ecosystems due to land use and climate change prevent managers from relying on historical averages for predicting future conditions, necessitating near‐term forecasts to mitigate freshwater risks to human health and safety (e.g., flash floods, harmful algal blooms) and ecosystem services (e.g., water‐related recreation and tourism). To assess the current state of freshwater forecasting and identify opportunities for future progress, we synthesized freshwater forecasting papers published in the past 5 years. We found that freshwater forecasting is currently dominated by near‐term forecasts of waterquantityand that near‐term waterqualityforecasts are fewer in number and in the early stages of development (i.e., non‐operational) despite their potential as important preemptive decision support tools. We contend that more freshwater quality forecasts are critically needed and that near‐term water quality forecasting is poised to make substantial advances based on examples of recent progress in forecasting methodology, workflows, and end‐user engagement. For example, current water quality forecasting systems can predict water temperature, dissolved oxygen, and algal bloom/toxin events 5 days ahead with reasonable accuracy. Continued progress in freshwater quality forecasting will be greatly accelerated by adapting tools and approaches from freshwater quantity forecasting (e.g., machine learning modeling methods). In addition, future development of effective operational freshwater quality forecasts will require substantive engagement of end users throughout the forecast process, funding, and training opportunities. Looking ahead, near‐term forecasting provides a hopeful future for freshwater management in the face of increased variability and risk due to global change, and we encourage the freshwater scientific community to incorporate forecasting approaches in water quality research and management. 
    more » « less
  2. Abstract Near‐term ecological forecasts provide resource managers advance notice of changes in ecosystem services, such as fisheries stocks, timber yields, or water quality. Importantly, ecological forecasts can identify where there is uncertainty in the forecasting system, which is necessary to improve forecast skill and guide interpretation of forecast results. Uncertainty partitioning identifies the relative contributions to total forecast variance introduced by different sources, including specification of the model structure, errors in driver data, and estimation of current states (initial conditions). Uncertainty partitioning could be particularly useful in improving forecasts of highly variable cyanobacterial densities, which are difficult to predict and present a persistent challenge for lake managers. As cyanobacteria can produce toxic and unsightly surface scums, advance warning when cyanobacterial densities are increasing could help managers mitigate water quality issues. Here, we fit 13 Bayesian state‐space models to evaluate different hypotheses about cyanobacterial densities in a low nutrient lake that experiences sporadic surface scums of the toxin‐producing cyanobacterium,Gloeotrichia echinulata. We used data from several summers of weekly cyanobacteria samples to identify dominant sources of uncertainty for near‐term (1‐ to 4‐week) forecasts ofG. echinulatadensities. Water temperature was an important predictor of cyanobacterial densities during model fitting and at the 4‐week forecast horizon. However, no physical covariates improved model performance over a simple model including the previous week's densities in 1‐week‐ahead forecasts. Even the best fit models exhibited large variance in forecasted cyanobacterial densities and did not capture rare peak occurrences, indicating that significant explanatory variables when fitting models to historical data are not always effective for forecasting. Uncertainty partitioning revealed that model process specification and initial conditions dominated forecast uncertainty. These findings indicate that long‐term studies of different cyanobacterial life stages and movement in the water column as well as measurements of drivers relevant to different life stages could improve model process representation of cyanobacteria abundance. In addition, improved observation protocols could better define initial conditions and reduce spatial misalignment of environmental data and cyanobacteria observations. Our results emphasize the importance of ecological forecasting principles and uncertainty partitioning to refine and understand predictive capacity across ecosystems. 
    more » « less
  3. Near-term, ecological forecasting with iterative model refitting and uncertainty partitioning has great promise for improving our understanding of ecological processes and the predictive skill of ecological models, but to date has been infrequently applied to predict biogeochemical fluxes. Bubble fluxes of methane (CH 4 ) from aquatic sediments to the atmosphere (ebullition) dominate freshwater greenhouse gas emissions, but it remains unknown how best to make robust near-term CH 4 ebullition predictions using models. Near-term forecasting workflows have the potential to address several current challenges in predicting CH 4 ebullition rates, including: development of models that can be applied across time horizons and ecosystems, identification of the timescales for which predictions can provide useful information, and quantification of uncertainty in predictions. To assess the capacity of near-term, iterative forecasting workflows to improve ebullition rate predictions, we developed and tested a near-term, iterative forecasting workflow of CH 4 ebullition rates in a small eutrophic reservoir throughout one open-water period. The workflow included the repeated updating of a CH 4 ebullition forecast model over time with newly-collected data via iterative model refitting. We compared the CH 4 forecasts from our workflow to both alternative forecasts generated without iterative model refitting and a persistence null model. Our forecasts with iterative model refitting estimated CH 4 ebullition rates up to 2 weeks into the future [RMSE at 1-week ahead = 0.53 and 0.48 log e (mg CH 4 m −2 d −1 ) at 2-week ahead horizons]. Forecasts with iterative model refitting outperformed forecasts without refitting and the persistence null model at both 1- and 2-week forecast horizons. Driver uncertainty and model process uncertainty contributed the most to total forecast uncertainty, suggesting that future workflow improvements should focus on improved mechanistic understanding of CH 4 models and drivers. Altogether, our study suggests that iterative forecasting improves week-to-week CH 4 ebullition predictions, provides insight into predictability of ebullition rates into the future, and identifies which sources of uncertainty are the most important contributors to the total uncertainty in CH 4 ebullition predictions. 
    more » « less
  4. Abstract Near‐term iterative forecasting is a powerful tool for ecological decision support and has the potential to transform our understanding of ecological predictability. However, to this point, there has been no cross‐ecosystem analysis of near‐term ecological forecasts, making it difficult to synthesize diverse research efforts and prioritize future developments for this emerging field. In this study, we analyzed 178 near‐term (≤10‐yr forecast horizon) ecological forecasting papers to understand the development and current state of near‐term ecological forecasting literature and to compare forecast accuracy across scales and variables. Our results indicated that near‐term ecological forecasting is widespread and growing: forecasts have been produced for sites on all seven continents and the rate of forecast publication is increasing over time. As forecast production has accelerated, some best practices have been proposed and application of these best practices is increasing. In particular, data publication, forecast archiving, and workflow automation have all increased significantly over time. However, adoption of proposed best practices remains low overall: for example, despite the fact that uncertainty is often cited as an essential component of an ecological forecast, only 45% of papers included uncertainty in their forecast outputs. As the use of these proposed best practices increases, near‐term ecological forecasting has the potential to make significant contributions to our understanding of forecastability across scales and variables. In this study, we found that forecastability (defined here as realized forecast accuracy) decreased in predictable patterns over 1–7 d forecast horizons. Variables that were closely related (i.e., chlorophyll and phytoplankton) displayed very similar trends in forecastability, while more distantly related variables (i.e., pollen and evapotranspiration) exhibited significantly different patterns. Increasing use of proposed best practices in ecological forecasting will allow us to examine the forecastability of additional variables and timescales in the future, providing a robust analysis of the fundamental predictability of ecological variables. 
    more » « less
  5. Abstract Near‐term ecological forecasting can be used to improve operational resource management in freshwater ecosystems. Here, we developed a framework that uses water temperature forecasting as a tool to predict the migrations of Atlantic salmon (Salmo salar) and European eel (Anguilla anguilla) between freshwater and the sea. We used historical observations of lake water temperature and fish migrations from an internationally important long‐term monitoring site (the Burrishoole catchment, Ireland) to generate daily probabilistic predictions (0%–100%) of when relatively large numbers of fish migrate. For this, we produced daily lake water temperature forecasts that extended up to 34 days into the future using Forecasting Lake and Reservoir Ecosystems (FLARE), an open‐source ensemble‐based forecasting system. We used this system to forecast lake water temperature conditions associated with percentile‐based fish migrations. Two metrics, P66 and P95, were used to indicate days with migrations in excess of 66% and 95%, respectively, of the historical daily fish counts. The results were first validated against water temperature observations, with an overall root mean squared error (RMSE) of 0.97°C. Our forecasts outperformed two other possible water temperature forecasting approaches, using site climatology (1.36°C) and site persistence (1.19°C). The predictions for fish migrations performed better for the P66 metric than for the more extreme P95 metric based on the continuous ranked probability score (CRPS), and the best results were obtained for the salmon downstream migration. This forecasting approach with quantified uncertainty levels has the potential to assist decision making, especially in the face of increased risks for these species. We conclude by discussing the scalability of the framework to other settings as a tool aimed at supporting management practices in real time. 
    more » « less