SUMMARY Extracellular ATP (eATP) signaling inArabidopsis thalianais mediated by the purinoceptor P2K1. Previous studies have clarified that the downstream transcriptional responses to eATP involve jasmonate (JA)‐based signaling components such as the JA receptor (COI1) and JA‐responsive bHLH transcription factors (MYCs). However, the specific contributions of JA itself on eATP signaling are unexplored. Here, we report that JA primes plant responses to eATP through P2K1. Our findings show that JA treatment significantly upregulatesP2K1transcription, corroborating our observation that JA facilitates eATP‐induced cytosolic calcium elevation and transcriptional reprogramming in a JA signaling‐dependent manner. Additionally, we find that salicylic acid pre‐treatment represses eATP‐induced plant response. These results suggest that JA accumulation during biotic or abiotic stresses potentiates eATP signaling, enabling plants to better cope with subsequent stress events.
more »
« less
Autophagy promotes jasmonate-mediated defense against nematodes
Abstract Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN;Meloidogyne incognita) infection induces autophagy in tomato (Solanum lycopersicum) and differentatgmutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activatingATGexpression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1.
more »
« less
- Award ID(s):
- 2040582
- PAR ID:
- 10485503
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Extracellular ATP (eATP) signaling inArabidopsis thalianais mediated by the purinoceptor P2K1. Previous studies have clarified that the downstream transcriptional responses to eATP involve jasmonate (JA)-based signaling components such as the JA receptor (COI1) and JA-responsive bHLH transcription factors (MYCs). However, the specific contributions of JA signaling itself on eATP signaling are unexplored. Here, we report that JA primes plant responses to eATP through P2K1. Our findings show that JA treatment significantly upregulatesP2K1transcription, corroborating our observation that JA facilitates eATP-induced cytosolic calcium elevation and transcriptional reprogramming in a JA signaling-dependent manner. Additionally, we find that salicylic acid pretreatment represses eATP-induced plant response. These results suggest that JA accumulation during biotic or abiotic stresses may potentiate eATP signaling, enabling plants to better cope with subsequent stress events. Plant hormone jasmonate (JA) enhances plant responses to extracellular ATP (eATP) inArabidopsis thalianathrough a mechanism dependent on the JA receptor COI1 and the eATP receptor P2K1. The reciprocal amplification of these signals provides a mechanistic explanation for how plants effectively respond to different stress events.more » « less
-
Jasmonates are important phytohormones involved in both plant developmental processes as well as defense reactions. Many JA-mediated plant defense responses have been studied in model plants using mutants of the jasmonate signaling pathway. However, in plant species where JA-signaling mutants are not accessible, the availability of a tool targeting JA signaling is crucial to investigate jasmonate-dependent processes. Neomycin is a poly-cationic aminoglycoside antibiotic that blocks the release of Ca2+ from internal stores. We examined the inhibitory activities of neomycin on different jasmonate-inducible responses in eight different plant species: Intracellular calcium measurements in Nicotiana tabacum cell culture, Sporamin gene induction in Ipomoea batatas, PDF2.2 gene expression in Triticum aestivum, Nepenthesin protease activity measurement in Nepenthes alata, extrafloral nectar production in Phaseolus lunatus, nectary formation in Populus trichocarpa, terpene accumulation in Picea abies, and secondary metabolite generation in Nicotiana attenuata. We are able to show that neomycin, an easily manageable and commercially available compound, inhibits JA-mediated responses across the plant kingdom.more » « less
-
Abstract The basal level of the plant defense hormone jasmonate (JA) in unstressed leaves is low, but wounding causes its near instantaneous increase. How JA biosynthesis is initiated is uncertain, but the lipolysis step that generates fatty acid precursors is generally considered to be the first step. Here, we used a series of physiological, pharmacological, genetic, and kinetic analyses of gene expression and hormone profiling to demonstrate that the early spiking of JA upon wounding does not depend on the expression of JA biosynthetic genes in Arabidopsis (Arabidopsis thaliana). Using a transgenic system, we showed how decoupling the responses to wounding and JA prevents the perpetual synthesis of JA in wounded leaves. We then used DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) as a model wound-responsive lipase to demonstrate that although its transient expression in leaves can elicit JA biosynthesis to a low level, an additional level of activation is triggered by wounding, which causes massive accumulation of JA. This wound-triggered boosting effect of DAD1-mediated JA synthesis can happen directly in damaged leaves or indirectly in undamaged remote leaves by the systemically transmitted wound signal. Finally, protein stability of DAD1 was influenced by wounding, α-linolenic acid, and mutation in its catalytic site. Together, the data support mechanisms that are independent of gene transcription and translation to initiate the rapid JA burst in wounded leaves and demonstrate how transient expression of the lipase can be used to reveal changes occurring at the level of activity and stability of the key lipolytic step.more » « less
-
Abstract Although the type‐I interferon (IFN‐I) response is considered vertebrate‐specific, recent findings about the Intracellular Pathogen Response (IPR) in nematodeCaenorhabditis elegansindicate that there are similarities between these two transcriptional immunological programs. The IPR is induced during infection with natural intracellular fungal and viral pathogens of the intestine and promotes resistance against these pathogens. Similarly, the IFN‐I response is induced by viruses and other intracellular pathogens and promotes resistance against infection. Whether the IPR and the IFN‐I response evolved in a divergent or convergent manner is an unanswered and exciting question, which could be addressed by further studies of immunity against intracellular pathogens inC. elegansand other simple host organisms. Here we highlight similar roles played by RIG‐I‐like receptors, purine metabolism enzymes, proteotoxic stressors, and transcription factors to induce the IPR and IFN‐I response, as well as the similar consequences of these defense programs on organismal development.more » « less
An official website of the United States government

