skip to main content


Title: Coherence and Transfer of Complex Learning with Fourier Analysis Learning Trajectories for Engineering Mathematics Education
Fourier analysis learning trajectories are investigated in this full paper as a joint interdisciplinary construct for a scholarly collaboration among engineering and mathematics faculty. This is a dynamic and recursive construct for aligning, developing, and sharing research based innovative practices for engineering mathematics education. Towards building more coherence and transfer of learning between engineering and mathematics courses, these trajectories offer experimental practice templates for the interdisciplinary community of practice for engineering mathematics education. Conjectured learning trajectories for Fourier analysis thinking are here articulated and experimented in three courses - Trigonometry, Linear Algebra, and Signal Processing. Informed by the interdisciplinary perspectives from the team, these trajectories help to design instruction to support the complex learning of the mathematical, and engineering foundations for the advanced mathematical concepts and practices such as Fourier Analysis for engineers. The re- sults highlight the impact of collaborative, interdisciplinary, and innovative practices within and across courses to purposefully build and refine instruction to foster coherence and transfer with learning trajectories across mathematics and engineering courses for engineering majors. This offers a transformative process towards an interdisciplinary engineering mathematics education. The valid assessment and measurement of complex learning outcomes along learning trajectories are discussed for engineering mathematics education, paving the pathway for our future research direction.  more » « less
Award ID(s):
1725952
NSF-PAR ID:
10485542
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Frontiers in Education (FIE)
Page Range / eLocation ID:
1 to 9
Subject(s) / Keyword(s):
["learning trajectories, Fourier analysis, transfer, engineering mathematics education, coherence, complex learning"]
Format(s):
Medium: X Other: pdf
Location:
Uppsala, Sweden
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The construct of active learning permeates undergraduate education in science, technology, engineering, and mathematics (STEM), but despite its prevalence, the construct means different things to different people, groups, and STEM domains. To better understand active learning, we constructed this review through an innovative interdisciplinary collaboration involving research teams from psychology and discipline-based education research (DBER). Our collaboration examined active learning from two different perspectives (i.e., psychology and DBER) and surveyed the current landscape of undergraduate STEM instructional practices related to the modes of active learning and traditional lecture. On that basis, we concluded that active learning—which is commonly used to communicate an alternative to lecture and does serve a purpose in higher education classroom practice—is an umbrella term that is not particularly useful in advancing research on learning. To clarify, we synthesized a working definition of active learning that operates within an elaborative framework, which we call the construction-of-understanding ecosystem. A cornerstone of this framework is that undergraduate learners should be active agents during instruction and that the social construction of meaning plays an important role for many learners, above and beyond their individual cognitive construction of knowledge. Our proposed framework offers a coherent and actionable concept of active learning with the aim of advancing future research and practice in undergraduate STEM education. 
    more » « less
  2. null (Ed.)
    This research paper studies the challenges that mathematics faculty and graduate teaching assistants (GTAs) faced when moving active and collaborative calculus courses from in-person to virtual instruction. As part of a larger pedagogical change project (described below), the math department at a public Research-1 university began transitioning pre-calculus and calculus courses to an active and collaborative learning (ACL) format in Fall 2019. The change began with the introduction of collaborative worksheets in recitations which were led by GTAs and supported by undergraduate learning assistants (LAs). Students recitation periods collaboratively solving the worksheet problems on whiteboards. When COVID-19 forced the rapid transition to online teaching, these ACL efforts faced an array of challenges. Faculty and GTA reflections on the changes to teaching and learning provide insight into how instructional staff can be supported in implementing ACL across various modes of instruction. The calculus teaching change efforts discussed in this paper are part of an NSF-supported project that aims to make ACL the default method of instruction in highly enrolled gateway STEM courses across the institution. The theoretical framework for the project builds on existing work on grassroots change in higher education (Kezar and Lester, 2011) to study the effect of communities of practice on changing teaching culture. The project uses course-based communities of practice (Wenger, 1999) that include instructors, GTAs, and LAs working together to design and enact teaching change in the targeted courses alongside ongoing professional development for GTAs and LAs. Six faculty and five GTAs involved in the teaching change effort in mathematics were interviewed after the Spring 2020 semester ended. Interview questions focused on faculty and GTA experiences implementing active learning after the rapid transition to online teaching. A grounded coding scheme was used to identify common themes in the challenges faced by instructors and GTAs as they moved online and in the impacts of technology, LA support, and the department community of practice on the move to online teaching. Technology, including both access and capabilities, emerged as a common barrier to student engagement. A particular barrier was students’ reluctance to share video or participate orally in sessions that were being recorded, making group work more difficult than it had been in a physical classroom. In addition, most students lacked access to a tablet for freehand writing, presenting a significant hurdle for sharing mathematical notation when physical whiteboards were no longer an option. These challenges point to the importance of incorporating flexibility in active learning implementation and in the professional development that supports teaching changes toward active learning, since what is conceived for a collaborative physical classroom may be implemented in a much different environment. The full paper will present a detailed analysis of the data to better understand how faculty and GTA experiences in the transition to online delivery can inform planning and professional development as the larger institutional change effort moves forward both in mathematics and in other STEM fields. 
    more » « less
  3. The purpose of this research paper is to explore whether participation in an interdisciplinary collaboration program partnering Preservice Teachers (PST) and Undergraduate Engineering Students (UES) results in an increase in teamwork effectiveness. The interdisciplinary collaboration was designed as a service-learning project within existing undergraduate programs that included the development and delivery of engineering content to a K-12 audience. The collaborations were integrated into existing courses in two colleges, engineering and education. The Behaviorally Anchored Rating Scale (BARS) version of the Comprehensive Assessment of Team Member Effectiveness (CATME) was used midway and at the end of the project to evaluate teamwork effectiveness. Results of the analysis indicated that both PST and UES experienced a significant increase in team-member effectiveness over the course of the project in four of the five factors: interacting with team members, keeping the team on track, expecting quality, and having relevant knowledge, skills and abilities. A noticeable positive increase in student attitudes towards the task was also observed between the midway and the end of the project. Analysis also suggests that the gain in the teamwork effectiveness did not differ across majors, with both UES and PST showing similar gains. Findings from this study provide some preliminary evidence that an innovative interdisciplinary service learning experience partnering engineering and education students, had a positive impact on their teamwork skills. 
    more » « less
  4. Mathematics is an important tool in engineering practice, as mathematical rules govern many designed systems (e.g., Nathan et al., 2013; Nathan et al., 2017). Investigations of structural engineers suggest that mathematical modelling is ubiquitous in their work, but the nature of the tasks they confront is not well-represented in the K-12 classroom (e.g., Gainsburg, 2006). This follows a larger literature base suggesting that school mathematics is often inauthentic and does represent how mathematics is used in practice. At the same time, algebra is a persistent gatekeeper to careers in engineering (e.g., Harackiewicz et al., 2012; Olson & Riordan, 2012). In the present study, we interviewed 12 engineers, asking them a series of questions about how they use specific kinds of algebraic function (e.g., linear, exponential, quadratic) in their work. The purpose of these interviews was to use the responses to create mathematical scenarios for College Algebra activities that would be personalized to community college students’ career interests. This curriculum would represent how algebra is used in practice by STEM professionals. However, our results were not what we expected. In this paper, we discuss three major themes that arose from qualitative analyses of the interviews. First, we found that engineers resoundingly endorsed the importance of College Algebra concepts for their day-to-day work, and uniformly stated that math was vital to engineering. However, the second theme was that the engineers struggled to describe how they used functions more complex than linear (i.e., y=mx+b) in their work. Students typically learn about linear functions prior to College Algebra, and in College Algebra explore more complex functions like polynomial, logarithmic, and exponential. Third, we found that engineers rarely use the explicit algebraic form of an algebraic function (e.g., y=3x+5), and instead rely on tables, graphs, informal arithmetic, and computerized computation systems where the equation is invisible. This was surprising, given that the bulk of the College Algebra course involves learning how to use and manipulate these formal expressions, learning skills like factoring, simplifying, solving, and interpreting parameters. We also found that these trends for engineers followed trends we saw in our larger sample where we interviewed professionals from across STEM fields. This study calls into question the gatekeeping role of formal algebraic courses like College Algebra for STEM careers. If engineers don’t actually use 75% of the content in these courses, why are they required? One reason might be that the courses are simply outdated, or arguments might be made that learning mathematics builds more general modelling and problem-solving skills. However, research from educational psychology on the difficulty of transfer would strongly refute this point – people tend to learn things that are very specific. Another reason to consider is that formal mathematics courses like advanced algebra have emerged as a very convenient mechanism to filter people by race, gender, and socioeconomic background, and to promote the maintenance of the “status quo” inequality in STEM fields. This is a critical issue to investigate for the future of the field of engineering as a whole. 
    more » « less
  5. Fan-fiction is proposed as a participatory and discovery-learning approach to science, technology, engineering, and mathematics (STEM) education; communication; and collaboration through the epistemic third space afforded by artscience. The objective is to increase the affective dimension in STEM instruction by allowing STEM to enter intimately into social spaces, all the while drawing interests from girls and women. There is strong female participation in fan-fiction creation, whether in the form of textual stories or other transmedia objects, that could be used to develop more multi-dimensional STEM-based experiential and imagination-centric learning without excluding the more technical aspects of the science – in fact, the technical aspects could be weaved in as a STEM problem or project to be collectively tackled through the communal experience of creating and responding to fan-fiction. Moreover, the world-building capability of fan-fiction, with its ability to bring together multiple fandoms such as multiple works from the same creator or different creators within similar genres, means that there is ample room for using fan-fiction during interdisciplinary engagement for STEM problem-solving or research creation approaches to learning and doing. In this article, some examples of activities are taken from workshops targeted at Malaysian audiences to explore the possibility of deploying fan-fiction approaches to STEM, or STEM through the lenses of artscience, within the culture of learning and doing in Malaysia. These workshops were not originally conceived with fan-fiction as method and medium in mind and yet, were found to share certain similar traits with fan-fiction. The world-building capacity of fan-fiction could be deployed to mainstream the incorporation of indigenous and cultural ways of knowing within Malaysia into the rubrics of institutionalized STEM education. However, the convergence and compatibility between fan-fiction and participatory design, which were featured in at least three of the four workshops depicted here, are the reasons for the choice, while the fourth workshop considers the practice of fan-fiction and its relevance to more informal practices in STEM publishing and communication at a meta level. 
    more » « less