skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust Satisfaction of Metric Interval Temporal Logic Objectives in Adversarial Environments
This paper studies the synthesis of controllers for cyber-physical systems (CPSs) that are required to carry out complex time-sensitive tasks in the presence of an adversary. The time-sensitive task is specified as a formula in the metric interval temporal logic (MITL). CPSs that operate in adversarial environments have typically been abstracted as stochastic games (SGs); however, because traditional SG models do not incorporate a notion of time, they cannot be used in a setting where the objective is time-sensitive. To address this, we introduce durational stochastic games (DSGs). DSGs generalize SGs to incorporate a notion of time and model the adversary’s abilities to tamper with the control input (actuator attack) and manipulate the timing information that is perceived by the CPS (timing attack). We define notions of spatial, temporal, and spatio-temporal robustness to quantify the amounts by which system trajectories under the synthesized policy can be perturbed in space and time without affecting satisfaction of the MITL objective. In the case of an actuator attack, we design computational procedures to synthesize controllers that will satisfy the MITL task along with a guarantee of its robustness. In the presence of a timing attack, we relax the robustness constraint to develop a value iteration-based procedure to compute the CPS policy as a finite-state controller to maximize the probability of satisfying the MITL task. A numerical evaluation of our approach is presented on a signalized traffic network to illustrate our results.  more » « less
Award ID(s):
2303563
PAR ID:
10485556
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Games
Volume:
14
Issue:
2
ISSN:
2073-4336
Page Range / eLocation ID:
30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies the satisfaction of a class of temporal properties for cyber-physical systems (CPSs) over a finite-time horizon in the presence of an adversary, in an environment described by discretetime dynamics. The temporal logic specification is given in safe−LTLF , a fragment of linear temporal logic over traces of finite length. The interaction of the CPS with the adversary is modeled as a two-player zerosum discrete-time dynamic stochastic game with the CPS as defender. We formulate a dynamic programming based approach to determine a stationary defender policy that maximizes the probability of satisfaction of a safe − LTLF formula over a finite time-horizon under any stationary adversary policy. We introduce secure control barrier certificates (S-CBCs), a generalization of barrier certificates and control barrier certificates that accounts for the presence of an adversary, and use S-CBCs to provide a lower bound on the above satisfaction probability. When the dynamics of the evolution of the system state has a specific underlying structure, we present a way to determine an S-CBC as a polynomial in the state variables using sum-of-squares optimization. An illustrative example demonstrates our approach. 
    more » « less
  2. null (Ed.)
    Defense mechanisms against network-level attacks are commonly based on the use of cryptographic techniques, such as lengthy message authentication codes (MAC) that provide data integrity guarantees. However, such mechanisms require significant resources (both computational and network bandwidth), which prevents their continuous use in resource-constrained cyber-physical systems (CPS). Recently, it was shown how physical properties of controlled systems can be exploited to relax these stringent requirements for systems where sensor measurements and actuator commands are transmitted over a potentially compromised network; specifically, that merely intermittent use of data authentication (i.e., at occasional time points during system execution), can still provide strong Quality-of-Control (QoC) guarantees even in the presence of false-data injection attacks, such as Man-in-the-Middle (MitM) attacks. Consequently, in this work, we focus on integrating security into existing resource-constrained CPS, in order to protect against MitM attacks on a system where a set of control tasks communicates over a real-time network with system sensors and actuators. We introduce a design-time methodology that incorporates requirements for QoC in the presence of attacks into end-to-end timing constraints for real-time control transactions, which include data acquisition and authentication, real-time network messages, and control tasks. This allows us to formulate a mixed integer linear programming-based method for direct synthesis of schedulable tasks and message parameters (i.e., deadlines and offsets) that do not violate timing requirements for the already deployed controllers, while adding a sufficient level of protection against network-based attacks; specifically, the synthesis method also provides suitable intermittent authentication policies that ensure the desired QoC levels under attack. To additionally reduce the security-related bandwidth overhead, we propose the use of cumulative message authentication at time instances when the integrity of messages from subsets of sensors should be ensured. Furthermore, we introduce a method for the opportunistic use of the remaining resources to further improve the overall QoC guarantees while ensuring system (i.e., task and message) schedulability. Finally, we demonstrate applicability and scalability of our methodology on synthetic automotive systems as well as a real-world automotive case-study. 
    more » « less
  3. While many research efforts on Cyber-Physical System (CPS) security are devoted to attack detection, how to respond to the detected attacks receives little attention. Attack response is essential since serious consequences can be caused if CPS continues to act on the compromised data by the attacks. In this work, we aim at the response to sensor attacks and adapt machine learning techniques to recover CPSs from such attacks. There are, however, several major challenges. i) Cumulative error. Recovery needs to estimate the current state of a physical system (e.g., the speed of a vehicle) in order to know if the system has been driven to a certain state. However, the estimation error accumulates over time in presence of compromised sensors. ii) Timely response. A fast response is needed since slow recovery not only comes with large estimation errors but also may be too late to avoid irreparable consequences. To address these challenges, we propose a novel learning-based solution, named sequence-predictive recovery (or SeqRec). To reduce the estimation error, SeqRec designs the first sequence-to-sequence (Seq2Seq) model to uncover the temporal and spatial dependencies among sensors and control demands, and then uses the model to estimate system states using the trustworthy data logged in history. To achieve an adequate and fast recovery, SeqRec designs the second Seq2Seq model that considers both the current time step using the remaining intact sensors and the future time steps based on a given target state, and embeds the model into a novel recovery control algorithm to drive a physical system back to that state. Experimental results demonstrate that SeqRec can effectively and efficiently recover CPSs from sensor attacks. 
    more » « less
  4. This article introduces a model-based approach for training feedback controllers for an autonomous agent operating in a highly non-linear (albeit deterministic) environment. We desire the trained policy to ensure that the agent satisfies specific task objectives and safety constraints, both expressed in Discrete-Time Signal Temporal Logic (DT-STL). One advantage for reformulation of a task via formal frameworks, like DT-STL, is that it permits quantitative satisfaction semantics. In other words, given a trajectory and a DT-STL formula, we can compute therobustness, which can be interpreted as an approximate signed distance between the trajectory and the set of trajectories satisfying the formula. We utilize feedback control, and we assume a feed forward neural network for learning the feedback controller. We show how this learning problem is similar to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the temporal horizon of the agent’s task objectives. This poses a challenge: RNNs are susceptible to vanishing and exploding gradients, and naïve gradient descent-based strategies to solve long-horizon task objectives thus suffer from the same problems. To address this challenge, we introduce a novel gradient approximation algorithm based on the idea of dropout or gradient sampling. One of the main contributions is the notion ofcontroller network dropout, where we approximate the NN controller in several timesteps in the task horizon by the control input obtained using the controller in a previous training step. We show that our control synthesis methodology can be quite helpful for stochastic gradient descent to converge with less numerical issues, enabling scalable back-propagation over longer time horizons and trajectories over higher-dimensional state spaces. We demonstrate the efficacy of our approach on various motion planning applications requiring complex spatio-temporal and sequential tasks ranging over thousands of timesteps. 
    more » « less
  5. Industries are embracing information technology and constructing more robust machines known as Cyber-Physical Systems(CPS) to automate processes. CPSs are envisioned to be pervasive, coordinating, and integrating computation, sensing, actuation, and physical processes. CPSs have various applications in life-critical scenarios, where their performance and reliability can have direct impacts on human safety and well-being. However, CPSs are vulnerable to malicious attacks, and researchers have developed detectors to identify such attacks in different contexts. Surprisingly, little work has been done to detect attacks on the actuators of CPS. Furthermore, actuators face a high risk of optimal hidden attacks designed by powerful attackers, which can push them into an unsafe state without detection. To the best of our knowledge, no such attacks on actuators have been developed yet. In this paper, we design an optimal hidden attack for actuators and evaluate its effectiveness. First, we develop a mathematical model for actuators and then create a linear program for convex optimization. Second, we solve the optimization problem and simulate the optimal attack. 
    more » « less