skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: EMPRESS. XII. Statistics on the Dynamics and Gas Mass Fraction of Extremely Metal-poor Galaxies
Abstract We  present the demography of the dynamics and gas mass fraction of 33 extremely metal-poor galaxies (EMPGs) with metallicities of 0.015–0.195Zand low stellar masses of 104–108Min the local universe. We conduct deep optical integral field spectroscopy (IFS) for the low-mass EMPGs with the medium-high resolution (R= 7500) grism of the 8 m Subaru FOCAS IFU instrument by the EMPRESS 3D survey, and investigate the Hαemission of the EMPGs. Exploiting the resolution high enough for the low-mass galaxies, we derive gas dynamics with the Hαlines by the fitting of three-dimensional disk models. We obtain an average maximum rotation velocity (vrot) of 15 ± 3 km s−1and an average intrinsic velocity dispersion (σ0) of 27 ± 10 km s−1for 15 spatially resolved EMPGs out of 33 EMPGs, and find that all 15 EMPGs havevrot0< 1 suggesting dispersion-dominated systems. There is a clear decreasing trend ofvrot0with the decreasing stellar mass and metallicity. We derive the gas mass fraction (fgas) for all 33 EMPGs, and find no clear dependence on stellar mass and metallicity. Thesevrot0andfgastrends should be compared with young high-zgalaxies observed by the forthcoming JWST IFS programs to understand the physical origins of the EMPGs in the local universe.  more » « less
Award ID(s):
2108020
PAR ID:
10485604
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
961
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 49
Size(s):
Article No. 49
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present kinematics of six local extremely metal-poor galaxies (EMPGs) with low metallicities (0.016–0.098Z) and low stellar masses (104.7–107.6M). Taking deep medium/high-resolution (R∼ 7500) integral-field spectra with 8.2 m Subaru, we resolve the small inner velocity gradients and dispersions of the EMPGs with Hαemission. Carefully masking out substructures originating by inflow and/or outflow, we fit three-dimensional disk models to the observed Hαflux, velocity, and velocity dispersion maps. All the EMPGs show rotational velocities (vrot) of 5–23 km s−1smaller than the velocity dispersions (σ0) of 17–31 km s−1, indicating dispersion-dominated (vrot0= 0.29–0.80 < 1) systems affected by inflow and/or outflow. Except for two EMPGs with large uncertainties, we find that the EMPGs have very large gas-mass fractions offgas≃ 0.9–1.0. Comparing our results with other Hαkinematics studies, we find thatvrot0decreases andfgasincreases with decreasing metallicity, decreasing stellar mass, and increasing specific star formation rate. We also find that simulated high-z(z∼ 7) forming galaxies have gas fractions and dynamics similar to the observed EMPGs. Our EMPG observations and the simulations suggest that primordial galaxies are gas-rich dispersion-dominated systems, which would be identified by the forthcoming James Webb Space Telescope observations atz∼ 7. 
    more » « less
  2. Abstract We have used the Atacama Large Millimeter/submillimeter Array to map CO(3–2) emission from a galaxy, DLA-B1228g, associated with the high-metallicity damped Lyαabsorber atz≈ 2.1929 toward the QSO PKS B1228–113. At an angular resolution of ≈0.″32 × 0.″24, DLA-B1228g shows extended CO(3–2) emission with a deconvolved size of ≈0.″78 × 0.″18, i.e., a spatial extent of ≈6.4 kpc. We detect extended stellar emission from DLA-B1228g in a Hubble Space Telescope Wide Field Camera 3 F160W image and find that Hαemission is detected in a Very Large Telescope SINFONI image from only one side of the galaxy. While the clumpy nature of the F160W emission and the offset between the kinematic and physical centers of the CO(3–2) emission are consistent with a merger scenario, this appears unlikely due to the lack of strong Hαemission, the symmetric double-peaked CO(3–2) line profile, the high molecular gas depletion timescale, and the similar velocity dispersions in the two halves of the CO(3–2) image. Kinematic modeling reveals that the CO(3–2) emission is consistent with arising from an axisymmetric rotating disk with an exponential profile, a rotation velocity ofvrot= 328 ± 7 km s−1, and a velocity dispersion ofσv= 62 ± 7 km s−1. The high value of the ratiovrotv, ≈5.3, implies that DLA-B1228g is a rotation-dominated cold disk galaxy, the second case of a high-zHi-absorption-selected galaxy identified with a cold rotating disk. We obtain a dynamical mass ofMdyn= (1.5 ± 0.1) × 1011M, similar to the molecular gas mass of ≈1011Minferred from earlier CO(1–0) studies; this implies that the galaxy is baryon-dominated in its inner regions. 
    more » « less
  3. Abstract Integral field spectroscopy (IFS) is a powerful tool for understanding the formation of galaxies across cosmic history. We present the observing strategy and first results of MSA-3D, a novel JWST program using multi-object spectroscopy in a slit-stepping strategy to produce IFS data cubes. The program observed 43 normal star-forming galaxies at redshifts 0.5 ≲z≲ 1.5, corresponding to the epoch when spiral thin-disk galaxies of the modern Hubble sequence are thought to emerge, obtaining kiloparsec-scale maps of rest-frame optical nebular emission lines with spectral resolutionR≃ 2700. Here we describe the multiplexed slit-stepping method, which is >15 times more efficient than the NIRSpec IFS mode for our program. As an example of the data quality, we present a case study of an individual galaxy atz= 1.104 (stellar massM*= 1010.3M, star formation rate, SFR = 3Myr−1) with prominent face-on spiral structure. We show that the galaxy exhibits a rotationally supported disk with moderate velocity dispersion ( σ = 3 6 4 + 5 km s−1), a negative radial metallicity gradient (−0.020 ± 0.002 dex kpc−1), a dust attenuation gradient, and an exponentially decreasing SFR density profile that closely matches the stellar continuum. These properties are characteristic of local spirals, indicating that mature galaxies are in place atz∼ 1. We also describe the customized data reduction and original cube-building software pipelines that we have developed to exploit the powerful slit-stepping technique. Our results demonstrate the ability of JWST slit-stepping to study galaxy populations at intermediate to high redshifts, with data quality similar to current surveys of thez∼ 0.1 Universe. 
    more » « less
  4. Abstract We present elemental abundance patterns (C, N, Mg, Si, Ca, Ti, V, Cr, Fe, Co, and Ni) for a population of 135 massive quiescent galaxies atz∼ 0.7 with ultra-deep rest-frame optical spectroscopy drawn from the LEGA-C survey. We derive average ages and elemental abundances in four bins of stellar velocity dispersion (σv) ranging from 150–250 km s−1using a full-spectrum hierarchical Bayesian model. The resulting elemental abundance measurements are precise to 0.05 dex. The majority of elements, as well as the total metallicity and stellar age, show a positive correlation withσv. Thus, the highest dispersion galaxies formed the earliest and are the most metal-rich. We find only mild or nonsignificant trends between [X/Fe] andσv, suggesting that the average star formation timescale does not strongly depend on velocity dispersion. To first order, the abundance patterns of thez∼ 0.7 quiescent galaxies are strikingly similar to those atz∼ 0. However, at the lowest-velocity dispersions, thez∼ 0.7 galaxies have slightly enhanced N, Mg, Ti, and Ni abundance ratios and earlier formation redshifts than theirz∼ 0 counterparts. Thus, while the higher-mass quiescent galaxy population shows little evolution, the low-mass quiescent galaxies population has grown significantly over the past 6 Gyr. Finally, the abundance patterns of bothz∼ 0 andz∼ 0.7 quiescent galaxies differ considerably from theoretical prediction based on a chemical evolution model, indicating that our understanding of the enrichment histories of these galaxies is still very limited. 
    more » « less
  5. We study the dynamics of cold molecular gas in two main-sequence galaxies at cosmic noon (zC-488879 at z  ≃ 1.47 and zC-400569 at z  ≃ 2.24) using new high-resolution ALMA observations of multiple 12 CO transitions. For zC-400569 we also reanalyze high-quality H α data from the SINS/zC-SINF survey. We find that (1) both galaxies have regularly rotating CO disks and their rotation curves are flat out to ∼8 kpc contrary to previous results pointing to outer declines in the rotation speed V rot ; (2) the intrinsic velocity dispersions are low ( σ CO  ≲ 15 km s −1 for CO and σ Hα  ≲ 37 km s −1 for H α ) and imply V rot / σ CO  ≳ 17 − 22 yielding no significant pressure support; (3) mass models using HST images display a severe disk-halo degeneracy, that is models with inner baryon dominance and models with “cuspy” dark matter halos can fit the rotation curves equally well due to the uncertainties on stellar and gas masses; and (4) Milgromian dynamics (MOND) can successfully fit the rotation curves with the same acceleration scale a 0 measured at z  ≃ 0. The question of the amount and distribution of dark matter in high- z galaxies remains unsettled due to the limited spatial extent of the available kinematic data; we discuss the suitability of various emission lines to trace extended rotation curves at high z . Nevertheless, the properties of these two high- z galaxies (high V rot / σ V ratios, inner rotation curve shapes, bulge-to-total mass ratios) are remarkably similar to those of massive spirals at z  ≃ 0, suggesting weak dynamical evolution over more than 10 Gyr of the Universe’s lifetime. 
    more » « less