skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Acoustophoresis around an elastic scatterer in a standing wave field
Acoustofluidic systems often employ prefabricated acoustic scatterers that perturb the imposed acoustic field to realize the acoustophoresis of immersed microparticles. We present a numerical study to investigate the time-averaged streaming and radiation force fields around a scatterer. Based on the streaming and radiation force field, we obtain the trajectories of the immersed microparticles with varying sizes and identify a critical transition size at which the motion of immersed microparticles in the vicinity of a prefabricated scatterer shifts from being streaming dominated to radiation dominated. We consider a range of acoustic frequencies to reveal that the critical transition size decreases with increasing frequency; this result explains the choice of acoustic frequencies in previously reported experimental studies. We also examine the impact of scatterer material and fluid properties on the streaming and radiation force fields, as well as on the critical transition size. Our results demonstrate that the critical transition size decreases with an increase in acoustic contrast factor: a nondimensional quantity that depends on material properties of the scatterer and the fluid. Our results provide a pathway to realize radiation force based manipulation of small particles by increasing the acoustic contrast factor of the scatterer, lowering the kinematic viscosity of the fluid, and increasing the acoustic frequency.  more » « less
Award ID(s):
2229636
PAR ID:
10485746
Author(s) / Creator(s):
;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review E
Volume:
108
Issue:
4
ISSN:
2470-0045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a numerical study to investigate the efficacy of impedance boundary conditions in capturing the interfacial dynamics of a particle subjected to an acoustic field and study the concomitant time-averaged acoustic streaming and radiation force fields. While impedance boundary conditions have been utilized to represent fluid–solid interface in acoustofluidics, such models assume the solid material to be locally reactive to the acoustic waves. However, there is a limited understanding of when this assumption holds true, raising concerns about the suitability of impedance boundary conditions. Here, we systematically investigate the applicability of impedance boundary conditions by comparing the predictions of an impedance boundary approach against a fully coupled fluid–solid model. We contrast the oscillation profiles of the fluid–solid interface predicted by the two models. We consider different scatterer materials to identify the extent to which the differences in interfacial dynamics impact the time-averaged fields and highlight the divergence within the predictions of the two models. Our findings indicate that, although impedance boundary conditions can yield qualitatively similar results to the full model in certain situations, the predictions from the two models generally differ both qualitatively and quantitatively. These results underscore the importance of exercising caution when applying these boundary conditions to model general acoustofluidic systems. 
    more » « less
  2. Abstract Ultrasound‐directed self‐assembly (DSA) utilizes the acoustic radiation force associated with a standing ultrasound wave field to organize particles dispersed in a fluid medium into specific patterns. State‐of‐the‐art ultrasound DSA methods use single‐frequency ultrasound wave fields, which only allow organizing particles into simple, periodic patterns, or require a large number of ultrasound transducers to assemble complex patterns. In contrast, this work introduces multi‐frequency ultrasound wave fields to organize particles into complex patterns. A method is theoretically derived to determine the operating parameters (frequency, amplitude, phase) of any arrangement of ultrasound transducers, required to assemble spherical particles dispersed in a fluid medium into specific patterns, and experimentally validated for a system with two frequencies. The results show that multi‐frequency compared to single‐frequency ultrasound DSA enables the assembly of complex patterns of particles with substantially fewer ultrasound transducers. Additionally, the method does not incur a penalty in terms of accuracy, and it does not require custom hardware for each different pattern, thus offering reconfigurability, which contrasts, e.g., acoustic holography. Multi‐frequency ultrasound DSA can spur progress in a myriad of engineering applications, including the manufacturing of multi‐functional polymer matrix composite materials that derive their structural, electric, acoustic, or thermal properties from the spatial organization of particles in the matrix. 
    more » « less
  3. Ultrasound directed self-assembly (DSA) allows organizing particles dispersed in a fluid medium into user-specified patterns, driven by the acoustic radiation force associated with a standing ultrasound wave. Accurate control of the spatial organization of the particles in the fluid medium requires accounting for medium viscosity and particle volume fraction. However, existing theories consider an inviscid medium or only determine the effect of viscosity on the magnitude of the acoustic radiation force rather than the locations where particles assemble, which is crucial information to use ultrasound DSA as a fabrication method. We experimentally measure the deviation between locations where spherical microparticles assemble during ultrasound DSA as a function of medium viscosity and particle volume fraction. Additionally, we simulate the experiments using coupled-phase theory and the time-averaged acoustic radiation potential, and we derive best-fit equations that predict the deviation between locations where particles assemble during ultrasound DSA when using viscous and inviscid theory. We show that the deviation between locations where particles assemble in viscous and inviscid media first increases and then decreases with increasing particle volume fraction and medium viscosity, which we explain by means of the sound propagation velocity of the mixture. This work has implications for using ultrasound DSA to fabricate, e.g., engineered polymer composite materials that derive their function from accurately organizing a pattern of particles embedded in the polymer matrix. 
    more » « less
  4. This paper presents the mixing, trapping, and ejection of a single microparticle based on an acoustic tweezers. Finite Element Model (FEM) simulation, along with analytical modeling, is used to study the selectivity of particles based on size and material properties. The acoustic tweezers is optimized to have a single trapping zone, where particles are trapped due to acoustic radiation force (which is calculated for particle sizes exceeding the Rayleigh approximation). The tweezers is experimentally shown to lift microparticles from the tweezers surface, selectively trap a single particle based on size and material acoustic properties, and then eject it upwards for collection. All these are obtained with negligible heat generation. 
    more » « less
  5. Ultrasound directed self-assembly (DSA) utilizes the acoustic radiation force (ARF) associated with a standing ultrasound wave to organize particles dispersed in a fluid medium into specific patterns. The ARF is a superposition of the primary acoustic radiation force, which results from the incident standing ultrasound wave, and the acoustic interaction force, which originates from single and multiple scattering between neighboring particles. In contrast with most reports in the literature that neglect multiple scattering when calculating the ARF, we demonstrate that the deviation between considering single or multiple scattering may reach up to 100%, depending on the ultrasound DSA process parameters and material properties. We evaluate a theoretical case with three spherical particles in a viscous medium and derive operating maps that quantify the deviation between both scattering approaches as a function of the ultrasound DSA process parameters. Then, we study a realistic system with hundreds of particles dispersed in a viscous medium, and show that the deviation between the ARF resulting from single and multiple scattering increases with decreasing particle size and increasing medium viscosity, density ratio, compressibility ratio, and particle volume fraction. This work provides a quantitative basis for determining whether to consider single or multiple scattering in ultrasound DSA simulations. 
    more » « less