skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust Fetal Heart Rate Tracking through Fetal Electrocardiography (ECG) and Photoplethysmography (PPG) Fusion
Award ID(s):
1838939 1937158
PAR ID:
10486054
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
ISSN:
2694-0604
ISBN:
979-8-3503-2447-1
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Location:
Sydney, Australia
Sponsoring Org:
National Science Foundation
More Like this
  1. Longitudinal fetal health monitoring is essential for high-risk pregnancies. Heart rate and heart rate variability are prime indicators of fetal health. In this work, we implemented two neural network architectures for heartbeat detection on a set of fetal phonocardiogram signals captured using fetal Doppler and a digital stethoscope. We test the efficacy of these networks using the raw signals and the hand-crafted energy from the signal. The results show a Convolutional Neural Network is the most efficient at identifying the S1 waveforms in a heartbeat, and its performance is improved when using the energy of the Doppler signals. We further discuss issues, such as low Signal-to-Noise Ratios (SNR), present in the training of a model based on the stethoscope signals. Finally, we show that we can improve the SNR, and subsequently the performance of the stethoscope, by matching the energy from the stethoscope to that of the Doppler signal. 
    more » « less