Abstract We investigate how stellar feedback from the first stars (Population III) distributes metals through the interstellar and intergalactic medium using the star-by-star cosmological hydrodynamics simulation, Aeos. We find that energy injected from the supernovae (SNe) of the first stars is enough to expel a majority of gas and injected metals beyond the virial radius of halos with massMdm ≲ 107M⊙, regardless of the number of SNe. This prevents self-enrichment and results in a nonmonotonic increase in metallicity at early times. Most minihalos (Mdm ≳ 105M⊙) do not retain significant fractions of the yields produced within their virial radii until they have grown to halo masses ofMdm ≳ 107M⊙. The loss of metals to regions well beyond the virial radius delays the onset of enriched star formation and extends the period that Population III star formation can persist. We also explore the contributions of different nucleosynthetic channels to 10 individual elements. On the timescale of the simulation (lowest redshiftz= 14.3), enrichment is dominated by core-collapse supernovae for all elements, but with a significant contribution from asymptotic giant branch winds to thes-process elements, which are normally thought to only be important at late times. In this work, we establish important mechanisms for early chemical enrichment, which allows us to apply Aeosin later epochs to trace the evolution of enrichment during the complete transition from Population III to Population II stars.
more »
« less
Connecting Primordial Star-forming Regions and Second-generation Star Formation in the Phoenix Simulations
Abstract We introduce the Phoenix Simulations, a suite of highly resolved cosmological simulations featuring hydrodynamics, primordial gas chemistry, primordial and enriched star formation and feedback, UV radiative transfer, and saved outputs with Δt= 200 kyr. We observe 73,523 individual primordial stars within 3313 distinct regions forming 2110 second-generation enriched star clusters byz≥ 12 within a combined 177.25 Mpc3volume across three simulations. The regions that lead to enriched star formation can contain ≳150 primordial stars, with 80% of regions having experienced combinations of primordial Type II, hypernovae, and/or pair-instability supernovae. Primordial supernovae enriched 0.8% of the volume, with 2% of enriched gas enriched by later-generation stars. We determine the extent of a primordial stellar region by its metal-rich or ionized hydrogen surrounding cloud; the metal-rich and ionized regions have time-dependent average radiir≲ 3kpc. 7 and 17% of regions haver> 7 kpc for metal-rich and ionized radii, respectively. We find that the metallicity distribution function of second-generation stars overlaps that of subsequent Population II star formation, spanning metal-deficient (∼7.94 × 10−8Z⊙) to supersolar (∼3.71Z⊙), and that 30.5% of second-generation stars haveZ> 10−2Z⊙. We find that the metallicity of second-generation stars depends on progenitor configuration, with metals from pair-instability supernovae contributing to the most metal-rich clusters; these clusters form promptly after the supernova event. Finally, we create an interpretable regression model to predict the radius of the metal-rich influence of Population III star systems within the first 7–18 Myr after the first Population III stars form in the region.
more »
« less
- PAR ID:
- 10486105
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 932
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 71
- Size(s):
- Article No. 71
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The formation of globular clusters and their relation to the distribution of dark matter have long puzzled astronomers. One of the most recently proposed globular cluster formation channels ties ancient star clusters to the large-scale streaming velocity of baryons relative to dark matter in the early universe. These streaming velocities affect the global infall of baryons into dark matter halos, the high-redshift halo mass function, and the earliest generations of stars. In some cases, streaming velocities may result in dense regions of dark matter-free gas that becomes Jeans unstable, potentially leading to the formation of compact star clusters. We investigate this hypothesis using cosmological hydrodynamical simulations that include a full chemical network and the formation and destruction of H2, a process crucial for the formation of the first stars. We find that high-density gas in regions with significant streaming velocities is indeed somewhat offset from the centers of dark matter halos, but this offset is typically significantly smaller than the virial radius. Gas outside of dark matter halos never reaches Jeans-unstable densities in our simulations. We postulate that low-level (Z≈ 10−3Z⊙) metal enrichment by Population III supernovae may enable cooling in the extra-virial regions, allowing gas outside of dark matter halos to cool to the cosmic microwave background temperature and become Jeans unstable. Follow-up simulations that include both streaming velocities and metal enrichment by Population III supernovae are needed to understand if streaming velocities provide one path for the formation of globular clusters in the early universe.more » « less
-
Abstract We present the first spatially resolved maps of gas-phase metallicity for two dust-obscured star-forming galaxies atz∼ 4, from the JWST TEMPLATES Early Release Science program, derived from NIRSpec integral field unit spectroscopy of the Hαand [Nii] emission lines. Empirical optical line calibrations are used to determine that the sources are globally enriched to near-solar levels. While one source shows elevated [N ii]/Hαratios and broad Hαemission consistent with the presence of an active galactic nucleus in a ≳1 kpc region, we argue that both systems have already undergone significant metal enrichment as a result of their extremely high star formation rates. Utilizing Atacama Large Millimeter/submillimeter Array rest-frame 380μm continuum and [Ci](3P2–3P1) line maps we compare the spatial variation of the metallicity and gas-to-dust ratio in the two galaxies, finding the two properties to be anticorrelated on highly resolved spatial scales, consistent with various literature studies ofz∼ 0 galaxies. The data are indicative of the enormous potential of JWST to probe the enrichment of the interstellar medium on ∼kpc scales in extremely dust-obscured systems atz∼ 4 and beyond.more » « less
-
Abstract Star formation is a fundamental, yet poorly understood, process of the Universe. It is important to study how star formation occurs in different galactic environments. Thus, here, in the first of a series of papers, we introduce the Low-metallicity Star Formation (LZ-STAR) survey of the Sh2-284 (hereafter S284) region, which, atZ ∼ 0.3–0.5Z⊙, is one of the lowest-metallicity star-forming regions of our Galaxy. LZ-STAR is a multifacility survey, including observations with JWST, the Atacama Large Millimeter/submillimeter Array (ALMA), Hubble Space Telescope, Chandra, and Gemini. As a starting point, we report JWST and ALMA observations of one of the most massive protostars in the region, S284p1. The observations of shock-excited molecular hydrogen reveal a symmetric, bipolar outflow originating from the protostar, spanning several parsecs, and fully covered by the JWST field of view and ALMA observations of CO(2–1) emission. These allow us to infer that the protostar has maintained a relatively stable orientation of disk accretion over its formation history. The JWST near-infrared continuum observations detect a centrally illuminated bipolar outflow cavity around the protostar, as well as a surrounding cluster of low-mass young stars. We develop new radiative transfer models of massive protostars designed for the low metallicity of S284. Fitting these models to the protostar’s spectral energy distribution implies a current protostellar mass of ∼10M⊙has formed from an initial ∼100M⊙core over the last ∼3 × 105yr. Overall, these results indicate that massive stars can form in an ordered manner in low-metallicity, protocluster environments.more » « less
-
The mode of star formation that results in the formation of globular clusters and young massive clusters is difficult to constrain through observations. We present models of massive star cluster formation using the TORCHframework, which uses the Astrophysical MUltipurpose Software Environment (AMUSE) to couple distinct multi-physics codes that handle star formation, stellar evolution and dynamics, radiative transfer, and magnetohydrodynamics. We upgraded TORCHby implementing the N-body code PETAR, thereby enabling TORCHto handle massive clusters forming from 106M⊙clouds with ≥105individual stars. We present results from TORCHsimulations of star clusters forming from 104, 105, and 106M⊙turbulent spherical gas clouds (named M4, M5, M6) of radiusR= 11.7 pc. We find that star formation is highly efficient and becomes more so at a higher cloud mass and surface density. For M4, M5, and M6 with initial surface densities 2.325 × 101,2,3M⊙pc−2, after a free-fall time oftff= 6.7,2.1,0.67 Myr, we find that ∼30%, 40%, and 60% of the cloud mass has formed into stars, respectively. The end of simulation-integrated star formation efficiencies for M4, M5, and M6 areϵ⋆ = M⋆/Mcloud = 36%, 65%, and 85%. Observations of nearby clusters similar in mass and size to M4 have instantaneous star formation efficiencies ofϵinst ≤ 30%, which is slightly lower than the integrated star formation efficiency of M4. The M5 and M6 models represent a different regime of cluster formation that is more appropriate for the conditions in starburst galaxies and gas-rich galaxies at high redshift, and that leads to a significantly higher efficiency of star formation. We argue that young massive clusters build up through short efficient bursts of star formation in regions that are sufficiently dense (Σ ≥ 102M⊙pc−2) and massive (Mcloud≥ 105M⊙). In such environments, stellar feedback from winds and radiation is not strong enough to counteract the gravity from gas and stars until a majority of the gas has formed into stars.more » « less
An official website of the United States government
