skip to main content


Title: A Monte Carlo Method for Evaluating Empirical Gyrochronology Models and Its Application to Wide Binary Benchmarks
Abstract

Accurate stellar ages are essential for our understanding of the star formation history of the Milky Way and Galactic chemical evolution, as well as to constrain exoplanet formation models. Gyrochronology, a relationship between stellar rotation and age, appears to offer a reliable age indicator for main-sequence (MS) stars over the mass range of approximately 0.6–1.3M. Those stars lose their angular momentum due to magnetic braking and as a result their rotation speeds decrease with age. Although current gyrochronology relations have been fairly well tested for young MS stars with masses greater than 1M, primarily in young open clusters, insufficient tests exist for older and lower mass MS stars. Binary stars offer the potential to expand and fill in the range of ages and metallicity over which gyrochronology can be empirically tested. In this paper, we demonstrate a Monte Carlo approach to evaluate gyrochronology models using binary stars. As examples, we used five previously published wide binary pairs. We also demonstrate a Monte Carlo approach to assess the precision and accuracy of ages derived from each gyrochronology model. For the traditional Skumanich models, the age uncertainties areσage/age = 15%–20% for stars withBV= 0.65 andσage/age = 5%–10% for stars withBV= 1.5 and rotation periodP≤ 20 days.

 
more » « less
Award ID(s):
2108975 1715718
NSF-PAR ID:
10486109
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
930
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 36
Size(s):
["Article No. 36"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We used the Immersion GRating Infrared Spectrometer (IGRINS) to determine fundamental parameters for 61 K- and M-type young stellar objects (YSOs) located in the Ophiuchus and Upper Scorpius star-forming regions. We employed synthetic spectra and a Markov chain Monte Carlo approach to fit specificK-band spectral regions and determine the photospheric temperature (T), surface gravity (logg), magnetic field strength (B), projected rotational velocity (vsini), andK-band veiling (rK). We determinedBfor ∼46% of our sample. Stellar parameters were compared to the results from Taurus-Auriga and the TW Hydrae association presented in Paper I of this series. We classified all the YSOs in the IGRINS survey with infrared spectral indices from Two Micron All Sky Survey and Wide-field Infrared Survey Explorer photometry between 2 and 24μm. We found that Class II YSOs typically have lowerloggandvsini, similarB, and higherK-band veiling than their Class III counterparts. Additionally, we determined the stellar parameters for a sample of K and M field stars also observed with IGRINS. We have identified intrinsic similarities and differences at different evolutionary stages with our homogeneous determination of stellar parameters in the IGRINS YSO survey. Consideringloggas a proxy for age, we found that the Ophiuchus and Taurus samples have a similar age. We also find that Upper Scorpius and TWA YSOs have similar ages, and are more evolved than Ophiuchus/Taurus YSOs.

     
    more » « less
  2. ABSTRACT

    Age is a stellar parameter that is both fundamental and difficult to determine. Among middle-aged M dwarfs, the most prolific hosts of close-in and detectable exoplanets, gyrochronology is the most promising method to assign ages, but requires calibration by rotation-temperature sequences (gyrochrones) in clusters of known ages. We curated a catalogue of 249 late K- and M-type (Teff = 3200–4200 K) exoplanet host stars with established rotation periods, and applied empirical, temperature-dependent rotation–age relations based on relevant published gyrochrones, including one derived from observations of the 4-Gyr-old open cluster M67. We estimated ages for 227 of these stars, and upper limits for eight others, excluding 14 which are too rapidly rotating or are otherwise outside the valid parameter range of our gyrochronology. We estimated uncertainties based on observed scatter in rotation periods in young clusters, error in the gyrochrones, and uncertainties in temperature and non-solar metallicity. For those stars with measured metallicities, we provide but do not incorporate a correction for the effects of deviation from solar-metallicity. The age distribution of our sample declines to near zero at 10 Gyr, the age of the Galactic disc, with the handful of outliers explainable by large uncertainties. Continued addition or extension of cluster rotation sequences to more thoroughly calibrate the gyrochronology in time and temperature space, more precise and robust measurement of rotation periods, and more accurate stellar parameter measurements will enable continued improvements in the age estimates of these important exoplanet host stars.

     
    more » « less
  3. Abstract

    The early K-type T-Tauri star, V1298 Tau (V= 10 mag, age ≈ 20–30 Myr) hosts four transiting planets with radii ranging from 4.9 to 9.6R. The three inner planets have orbital periods of ≈8–24 days while the outer planet’s period is poorly constrained by single transits observed with K2 and the Transiting Exoplanet Survey Satellite (TESS). Planets b, c, and d are proto–sub-Neptunes that may be undergoing significant mass loss. Depending on the stellar activity and planet masses, they are expected to evolve into super-Earths/sub-Neptunes that bound the radius valley. Here we present results of a joint transit and radial velocity (RV) modeling analysis, which includes recently obtained TESS photometry and MAROON-X RV measurements. Assuming circular orbits, we obtain a low-significance (≈2σ) RV detection of planet c, implying a mass of19.88.9+9.3Mand a conservative 2σupper limit of <39M. For planets b and d, we derive 2σupper limits ofMb< 159MandMd< 41M, respectively. For planet e, plausible discrete periods ofPe> 55.4 days are ruled out at the 3σlevel while seven solutions with 43.3 <Pe/d< 55.4 are consistent with the most probable 46.768131 ± 000076 days solution within 3σ. Adopting the most probable solution yields a 2.6σRV detection with a mass of 0.66 ± 0.26MJup. Comparing the updated mass and radius constraints with planetary evolution and interior structure models shows that planets b, d, and e are consistent with predictions for young gas-rich planets and that planet c is consistent with having a water-rich core with a substantial (∼5% by mass) H2envelope.

     
    more » « less
  4. Abstract

    White dwarfs (WDs) offer unrealized potential in solving two problems in astrophysics: stellar age accuracy and precision. WD cooling ages can be inferred from surface temperatures and radii, which can be constrained with precision by high-quality photometry and parallaxes. Accurate and precise Gaia parallaxes along with photometric surveys provide information to derive cooling and total ages for vast numbers of WDs. Here we analyze 1372 WDs found in wide binaries with main-sequence (MS) companions and report on the cooling and total age precision attainable in these WD+MS systems. The total age of a WD can be further constrained if its original metallicity is known because the MS lifetime depends on metallicity at fixed mass, yet metallicity is unavailable via spectroscopy of the WD. We show that incorporating spectroscopic metallicity constraints from 38 wide binary MS companions substantially decreases internal uncertainties in WD total ages compared to a uniform constraint. Averaged over the 38 stars in our sample, the total (internal) age uncertainty improves from 21.04% to 16.77% when incorporating the spectroscopic constraint. Higher mass WDs yield better total age precision; for eight WDs with zero-age MS masses ≥2.0M, the mean uncertainty in total ages improves from 8.61% to 4.54% when incorporating spectroscopic metallicities. We find that it is often possible to achieve 5% total age precision for WDs with progenitor masses above 2.0Mif parallaxes with ≤1% precision and Pan-STARRSg,r, andiphotometry with ≤0.01 mag precision are available.

     
    more » « less
  5. Abstract

    We present stellar rotation periods for late K- and early M-dwarf members of the 4 Gyr old open cluster M67 as calibrators for gyrochronology and tests of stellar spin-down models. Using Gaia EDR3 astrometry for cluster membership and Pan-STARRS (PS1) photometry for binary identification, we build this set of rotation periods from a campaign of monitoring M67 with the Canada–France–Hawaii Telescope’s MegaPrime wide-field imager. We identify 1807 members of M67, of which 294 are candidate single members with significant rotation period detections. Moreover, we fit a polynomial to the period versus color-derived effective temperature sequence observed in our data. We find that the rotation of very cool dwarfs can be explained by simple solid-body spin-down between 2.7 and 4 Gyr. We compare this rotational sequence to the predictions of gyrochronological models and find that the best match is Skumanich-like spin-down,Prott0.62, applied to the sequence of Ruprecht 147. This suggests that, for spectral types K7–M0 with near-solar metallicity, once a star resumes spinning down, a simple Skumanich-like relation is sufficient to describe their rotation evolution, at least through the age of M67. Additionally, for stars in the range M1–M3, our data show that spin-down must have resumed prior to the age of M67, in conflict with the predictions of the latest spin-down models.

     
    more » « less