In recent years, non-reciprocally coupled systems have received growing attention. Previous work has shown that the interplay of non-reciprocal coupling and Goldstone modes can drive the emergence of temporal order such as traveling waves. We show that these phenomena are generically found in a broad class of pattern-forming systems, including mass-conserving reaction--diffusion systems and viscoelastic active gels. All these systems share a characteristic dispersion relation that acquires a non-zero imaginary part at the edge of the band of unstable modes and exhibit a regime of propagating structures (traveling wave bands or droplets). We show that models for these systems can be mapped to a common ``normal form'' that can be seen as a spatially extended generalization of the FitzHugh--Nagumo model, providing a unifying dynamical-systems perspective. We show that the minimal non-reciprocal Cahn--Hilliard (NRCH) equations exhibit a surprisingly rich set of behaviors, including interrupted coarsening of traveling waves without selection of a preferred wavelength and transversal undulations of wave fronts in two dimensions. We show that the emergence of traveling waves and their speed are precisely predicted from the local dispersion relation at interfaces far away from the homogeneous steady state. The traveling waves are therefore a consequence of spatially localized coalescence of hydrodynamic modes arising from mass conservation and translational invariance of displacement fields. Our work thus generalizes previously studied non-reciprocal phase transitions and identifies generic mechanisms for the emergence of dynamical patterns of conserved fields.
Motivated by the anisotropic interactions between fish, we implement spatially anisotropic and therefore non-reciprocal interactions in the 2D Ising model. First, we show that the model with non-reciprocal interactions alters the system critical temperature away from that of the traditional 2D Ising model. Further, local perturbations to the magnetization in this out-of-equilibrium system manifest themselves as traveling waves of spin states along the lattice, also seen in a mean-field model of our system. The speed and directionality of these traveling waves are controllable by the orientation and magnitude of the non-reciprocal interaction kernel as well as the proximity of the system to the critical temperature.
more » « less- Award ID(s):
- 2402345
- PAR ID:
- 10486333
- Publisher / Repository:
- https://iopscience.iop.org/article/10.1088/1742-5468/accce7/meta
- Date Published:
- Journal Name:
- Journal of Statistical Mechanics: Theory and Experiment
- Volume:
- 2023
- Issue:
- 4
- ISSN:
- 1742-5468
- Page Range / eLocation ID:
- 043209
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Whitham modulation equations are derived for the nonlinear Schrödinger equation in the plane ((2+1)‐dimensional nonlinear Schrödinger [2d NLS]) with small dispersion. The modulation equations are obtained in terms of both physical and Riemann‐type variables; the latter yields equations of hydrodynamic type. The complete 2d NLS Whitham system consists of six dynamical equations in evolutionary form and two constraints. As an application, we determine the linear stability of one‐dimensional traveling waves. In both the elliptic and hyperbolic cases, the traveling waves are found to be unstable. This result is consistent with previous investigations of stability by other methods and is supported by direct numerical calculations.
-
Abstract Ising machines are hardware accelerators for combinatorial optimization and probabilistic sampling, using stochasticity to explore spin configurations and avoid local minima. We refine the previously proposed coupled chaotic bits (c-bits), which operate deterministically, by introducing noise. This improves performance in combinatorial optimization, achieving algorithmic scaling comparable to probabilistic bits (p-bits). We show that c-bits follow the quantum Boltzmann law in a 1D transverse field Ising model. Furthermore, c-bits exhibit critical dynamics similar to p-bits in 2D Ising and 3D spin glass models. Finally, we propose a noise-augmented c-bit approach via the adaptive parallel tempering algorithm (APT), which outperforms fully deterministic c-bits running simulated annealing. Analog Ising machines with coupled oscillators could draw inspiration from our approach, as running replicas at constant temperature eliminates the need for global modulation of coupling strengths. Ultimately, mixing stochasticity with deterministic c-bits yields a powerful hybrid computing scheme that can offer benefits in asynchronous, massively parallel hardware implementations.
-
Abstract We report our experimental observation of modulated standing waves that invade bulk oscillations exhibited by the Belousov‐Zhabotinsky‐Aerosol OT reverse microemulsion system. The modulated standing waves form within domains bounded by a traveling wave. We also observe that the modulated standing waves give way to traveling waves, which we connect to numerical simulations in a simple chemical model.
-
Abstract Recent analyses have found waves of neural activity traveling across entire visual cortical areas in awake animals. These traveling waves modulate excitability of local networks and perceptual sensitivity. The general computational role for these spatiotemporal patterns in the visual system, however, remains unclear. Here, we hypothesize that traveling waves endow the brain with the capacity to predict complex and naturalistic visual inputs. We present a new network model whose connections can be rapidly and efficiently trained to predict natural movies. After training, a few input frames from a movie trigger complex wave patterns that drive accurate predictions many frames into the future, solely from the network’s connections. When the recurrent connections that drive waves are randomly shuffled, both traveling waves and the ability to predict are eliminated. These results show traveling waves could play an essential computational role in the visual system by embedding continuous spatiotemporal structures over spatial maps.