skip to main content


Title: Non-reciprocal interactions spatially propagate fluctuations in a 2D Ising model
Abstract

Motivated by the anisotropic interactions between fish, we implement spatially anisotropic and therefore non-reciprocal interactions in the 2D Ising model. First, we show that the model with non-reciprocal interactions alters the system critical temperature away from that of the traditional 2D Ising model. Further, local perturbations to the magnetization in this out-of-equilibrium system manifest themselves as traveling waves of spin states along the lattice, also seen in a mean-field model of our system. The speed and directionality of these traveling waves are controllable by the orientation and magnitude of the non-reciprocal interaction kernel as well as the proximity of the system to the critical temperature.

 
more » « less
Award ID(s):
2402345
NSF-PAR ID:
10486333
Author(s) / Creator(s):
; ;
Publisher / Repository:
https://iopscience.iop.org/article/10.1088/1742-5468/accce7/meta
Date Published:
Journal Name:
Journal of Statistical Mechanics: Theory and Experiment
Volume:
2023
Issue:
4
ISSN:
1742-5468
Page Range / eLocation ID:
043209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose and investigate the performance of integrated photonic isolators based on non-reciprocal mode conversion facilitated by unidirectional, traveling acoustic waves. A triply-guided waveguide system on-chip, comprising two optical modes and an electrically-driven acoustic mode, facilitates the non-reciprocal mode conversion and is combined with spatial mode filters to create the isolator. The co-guided and co-traveling arrangement enables isolation with no additional optical loss, without magnetic-optic materials, and with low power consumption. The approach is theoretically evaluated with simulations predicting over 20 dB of isolation and 2.6 dB of insertion loss with a 370 GHz optical bandwidth and 1 cm device length. The isolator uses only 1 mW of electrical drive power, an improvement of 1–3 orders of magnitude over the state of the art. The electronic drive and lack of magneto-optic materials suggest the potential for straightforward integration with drive circuits, including in monolithic CMOS electronic-photonic platforms, enabling a fully contained ‘black box’ optical isolator with two optical ports and DC electrical power.

     
    more » « less
  2. Scanning probes reveal complex, inhomogeneous patterns on the surface of many condensed matter systems. In some cases, the patterns form self-similar, fractal geometric clusters. In this paper, we advance the theory of criticality as it pertains to those geometric clusters (defined as connected sets of nearest-neighbor aligned spins) in the context of Ising models. We show how data from surface probes can be used to distinguish whether electronic patterns observed at the surface of a material are confined to the surface, or whether the patterns originate in the bulk. Whereas thermodynamic critical exponents are derived from the behavior of Fortuin–Kasteleyn (FK) clusters, critical exponents can be similarly defined for geometric clusters. We find that these geometric critical exponents are not only distinct numerically from the thermodynamic and uncorrelated percolation exponents, but that they separately satisfy scaling relations at the critical fixed points discussed in the text. We furthermore find that the two-dimensional (2D) cross-sections of geometric clusters in the three-dimensional (3D) Ising model display critical scaling behavior at the bulk phase transition temperature. In particular, we show that when considered on a 2D slice of a 3D system, the pair connectivity function familiar from percolation theory displays more robust critical behavior than the spin-spin correlation function, and we calculate the corresponding critical exponent. We discuss the implications of these two distinct length scales in Ising models. We also calculate the pair connectivity exponent in the clean 2D case. These results extend the theory of geometric criticality in the clean Ising universality classes, and facilitate the broad application of geometric cluster analysis techniques to maximize the information that can be extracted from scanning image probe data in condensed matter systems. 
    more » « less
  3. null (Ed.)
    Autonomous active, elastic filaments that interact with each other to achieve cooperation and synchrony underlie many critical functions in biology. The mechanisms underlying this collective response and the essential ingredients for stable synchronization remain a mystery. Inspired by how these biological entities integrate elasticity with molecular motor activity to generate sustained oscillations, a number of synthetic active filament systems have been developed that mimic oscillations of these biological active filaments. Here, we describe the collective dynamics and stable spatiotemporal patterns that emerge in such biomimetic multi-filament arrays, under conditions where steric interactions may impact or dominate the collective dynamics. To focus on the role of steric interactions, we study the system using Brownian dynamics, without considering long-ranged hydrodynamic interactions. The simulations treat each filament as a connected chain of self-propelling colloids. We demonstrate that short-range steric inter-filament interactions and filament roughness are sufficient – even in the absence of inter-filament hydrodynamic interactions – to generate a rich variety of collective spatiotemporal oscillatory, traveling and static patterns. We first analyze the collective dynamics of two- and three-filament clusters and identify parameter ranges in which steric interactions lead to synchronized oscillations and strongly occluded states. Generalizing these results to large one-dimensional arrays, we find rich emergent behaviors, including traveling metachronal waves, and modulated wavetrains that are controlled by the interplay between the array geometry, filament activity, and filament elasticity. Interestingly, the existence of metachronal waves is non-monotonic with respect to the inter-filament spacing. We also find that the degree of filament roughness significantly affects the dynamics – specifically, filament roughness generates a locking-mechanism that transforms traveling wave patterns into statically stuck and jammed configurations. Taken together, simulations suggest that short-ranged steric inter-filament interactions could combine with complementary hydrodynamic interactions to control the development and regulation of oscillatory collective patterns. Furthermore, roughness and steric interactions may be critical to the development of jammed spatially periodic states; a spatiotemporal feature not observed in purely hydrodynamically interacting systems. 
    more » « less
  4. Abstract

    Recent developments in 2D magnetic materials have motivated the search for new van der Waals magnetic materials, especially Ising‐type magnets with strong magnetic anisotropy. Fe‐basedMPX3(M= transition metal,X= chalcogen) compounds such as FePS3and FePSe3both exhibit an Ising‐type magnetic order, but FePSe3receives much less attention compared to FePS3. This work focuses on establishing the strategy to engineer magnetic anisotropy and exchange interactions in this less‐explored compound. Through chalcogen and metal substitutions, the magnetic anisotropy is found to be immune against S substitution for Se whereas tunable only with heavy Mn substitution for Fe. In particular, Mn substitution leads to a continuous rotation of magnetic moments from the out‐of‐plane direction toward the in‐plane. Furthermore, the magnetic ordering temperature displays non‐monotonic doping dependence for both chalcogen and metal substitutions but due to different mechanisms. These findings provide deeper insight into the Ising‐type magnetism in this important van der Waals material, shedding light on the study of other Ising‐type magnetic systems as well as discovering novel 2D magnets for potential applications in spintronics.

     
    more » « less
  5. null (Ed.)
    Acoustic devices have played a major role in telecommunications for decades as the leading technology for filtering in RF and microwave frequencies. While filter requirements for insertion loss and bandwidth become more stringent, more functionality is desired for many applications to improve overall system level performance. For instance, a filter with non-reciprocal transmission can minimize losses due to mismatch and protect the source from reflections while also performing its filtering duties. A device such as this one was originally researched by scientists decades ago. These devices were based on the acoustoelectric effect where surface acoustic waves (SAW) traveling in the same direction are as drift carriers in a nearby semiconductor are amplified. While several experiments were successfully demonstrated in [1], [2], [3]. these devices suffered from extremely high operating electric fields and noise figure [4], [5]. In the past few years, new techniques have been developed for implementing non-reciprocal devices such as isolators and circulators without utilizing magnetic materials [6], [7], [8], [9]. The most popular technique has been spatio-temporal modulation (STM) where commutated clock signals synchronized with delay elements result in non-reciprocal transmission through the network. STM has also been adapted by researchers to create non-reciprocal filters. The work in [10] utilizes 4 clocks signals to obtain a non-reciprocal filter with an insertion loss of -6.6 dB an isolation of 25.4 dB. Another filter demonstrated in [11] utilizes 6 synchronized clock signals to obtain a non-reciprocal filter with an insertion loss of -5.6 dB and an Isolation of 20 dB. In this work, a novel non-reciprocal topology is explored with the use of only one modulation signal. The design is based on asymmetrical SAW delay lines with a parametric amplifier. The device can operate in two different modes: phase coherent mode and phase incoherent mode. In phase coherent mode, the device is capable of over +12 dB of gain and 20.2 dB of isolation. A unique feature of this mode is that the phase of the pump signal can be utilized to tune the frequency response of the filter. Under the phase-incoherent mode, the pump frequency remains constant and the device behaves as a normal filter with non-reciprocal transmission exhibiting over +7 dB of gain and 17.33 dB of isolation. While the tuning capability is lost in this mode, phase-coherence is no longer necessary so the device can be utilized in most filtering applications. 
    more » « less