Over 22 million people worldwide are affected by Parkinson's disease, stroke, and Bell's palsy (BP), which can cause facial paralysis (FP). People with FP have trouble having their expressions understood: both laypersons and clinicians have difficulty understanding them and often misinterpret them, which can result in poor social interactions and poor care delivery. One way to address this problem is through better education and training, of which computational tools may prove invaluable. Thus, in this paper, we explore how to build systems that can recognize and synthesize asymmetrical facial expressions. We introduce a novel computational model of asymmetric facial expressions for BP, which we can synthesize on either virtual and robotic patient simulators. We explore this within the context of clinical education, and built a patient simulator with synthesized FP in order to help clinicians perceive facial paralysis in patients. We conducted both computational and human-focused evaluations of the model, including the feedback from clinical experts. Our results suggest that our BP model is realistic, and comparable to the expressions of people with BP. Thus, this work has the potential to provide a practical training tool for clinical learners to better understand the expressions of people with BP. Our work can also help researchers in the facial recognition community to explore new methods for asymmetric facial expression analysis and synthesis.
more »
« less
Facial Expression Modeling and Synthesis for Patient Simulator Systems: Past, Present, and Future
Clinical educators have used robotic and virtual patient simulator systems (RPS) for dozens of years, to help clinical learners (CL) gain key skills to help avoid future patient harm. These systems can simulate human physiological traits; however, they have static faces and lack the realistic depiction of facial cues, which limits CL engagement and immersion. In this article, we provide a detailed review of existing systems in use, as well as describe the possibilities for new technologies from the human–robot interaction and intelligent virtual agents communities to push forward the state of the art. We also discuss our own work in this area, including new approaches for facial recognition and synthesis on RPS systems, including the ability to realistically display patient facial cues such as pain and stroke. Finally, we discuss future research directions for the field.
more »
« less
- Award ID(s):
- 1935500
- PAR ID:
- 10486453
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Computing for Healthcare
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 2691-1957
- Page Range / eLocation ID:
- 1 to 32
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Extended reality (XR) technologies, such as virtual reality (VR) and augmented reality (AR), provide users, their avatars, and embodied agents a shared platform to collaborate in a spatial context. Although traditional face-to-face communication is limited by users’ proximity, meaning that another human’s non-verbal embodied cues become more difficult to perceive the farther one is away from that person, researchers and practitioners have started to look into ways to accentuate or amplify such embodied cues and signals to counteract the effects of distance with XR technologies. In this article, we describe and evaluate the Big Head technique, in which a human’s head in VR/AR is scaled up relative to their distance from the observer as a mechanism for enhancing the visibility of non-verbal facial cues, such as facial expressions or eye gaze. To better understand and explore this technique, we present two complimentary human-subject experiments in this article. In our first experiment, we conducted a VR study with a head-mounted display to understand the impact of increased or decreased head scales on participants’ ability to perceive facial expressions as well as their sense of comfort and feeling of “uncannniness” over distances of up to 10 m. We explored two different scaling methods and compared perceptual thresholds and user preferences. Our second experiment was performed in an outdoor AR environment with an optical see-through head-mounted display. Participants were asked to estimate facial expressions and eye gaze, and identify a virtual human over large distances of 30, 60, and 90 m. In both experiments, our results show significant differences in minimum, maximum, and ideal head scales for different distances and tasks related to perceiving faces, facial expressions, and eye gaze, and we also found that participants were more comfortable with slightly bigger heads at larger distances. We discuss our findings with respect to the technologies used, and we discuss implications and guidelines for practical applications that aim to leverage XR-enhanced facial cues.more » « less
-
The expression of human emotion is integral to social interaction, and in virtual reality it is increasingly common to develop virtual avatars that attempt to convey emotions by mimicking these visual and aural cues, i.e. the facial and vocal expressions. However, errors in (or the absence of) facial tracking can result in the rendering of incorrect facial expressions on these virtual avatars. For example, a virtual avatar may speak with a happy or unhappy vocal inflection while their facial expression remains otherwise neutral. In circumstances where there is conflict between the avatar's facial and vocal expressions, it is possible that users will incorrectly interpret the avatar's emotion, which may have unintended consequences in terms of social influence or in terms of the outcome of the interaction. In this paper, we present a human-subjects study (N = 22) aimed at understanding the impact of conflicting facial and vocal emotional expressions. Specifically we explored three levels of emotional valence (unhappy, neutral, and happy) expressed in both visual (facial) and aural (vocal) forms. We also investigate three levels of head scales (down-scaled, accurate, and up-scaled) to evaluate whether head scale affects user interpretation of the conveyed emotion. We find significant effects of different multimodal expressions on happiness and trust perception, while no significant effect was observed for head scales. Evidence from our results suggest that facial expressions have a stronger impact than vocal expressions. Additionally, as the difference between the two expressions increase, the less predictable the multimodal expression becomes. For example, for the happy-looking and happy-sounding multimodal expression, we expect and see high happiness rating and high trust, however if one of the two expressions change, this mismatch makes the expression less predictable. We discuss the relationships, implications, and guidelines for social applications that aim to leverage multimodal social cues.more » « less
-
Embodied virtual agents serving as patient simulators are widely used in medical training scenarios, ranging from physical patients to virtual patients presented via virtual and augmented reality technologies. Physical-virtual patients are a hybrid solution that combines the benefits of dynamic visuals integrated into a human-shaped physical form that can also present other cues, such as pulse, breathing sounds, and temperature. Sometimes in simulation the visuals and shape do not match. We carried out a human-participant study employing graduate nursing students in pediatric patient simulations comprising conditions associated with matching/non-matching of the visuals and shape.more » « less
-
Abstract In recent years, there has been a growing demand for miniaturization, low power consumption, quick treatments, and non-invasive clinical strategies in the healthcare industry. To meet these demands, healthcare professionals are seeking new technological paradigms that can improve diagnostic accuracy while ensuring patient compliance. Neuromorphic engineering, which uses neural models in hardware and software to replicate brain-like behaviors, can help usher in a new era of medicine by delivering low power, low latency, small footprint, and high bandwidth solutions. This paper provides an overview of recent neuromorphic advancements in medicine, including medical imaging and cancer diagnosis, processing of biosignals for diagnosis, and biomedical interfaces, such as motor, cognitive, and perception prostheses. For each section, we provide examples of how brain-inspired models can successfully compete with conventional artificial intelligence algorithms, demonstrating the potential of neuromorphic engineering to meet demands and improve patient outcomes. Lastly, we discuss current struggles in fitting neuromorphic hardware with non-neuromorphic technologies and propose potential solutions for future bottlenecks in hardware compatibility.more » « less
An official website of the United States government

