skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1935500

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Many robot-delivered health interventions aim to support people longitudinally at home to complement or replace in-clinic treat- ments. However, there is little guidance on how robots can support collaborative goal setting (CGS). CGS is the process in which a person works with a clinician to set and modify their goals for care; it can improve treatment adherence and efficacy. However, for home-deployed robots, clinicians will have limited availability to help set and modify goals over time, which necessitates that robots support CGS on their own. In this work, we explore how robots can facilitate CGS in the context of our robot CARMEN (Cognitively Assistive Robot for Motivation and Neurorehabilitation), which delivers neurorehabilitation to people with mild cognitive impairment (PwMCI). We co-designed robot behaviors for supporting CGS with clinical neuropsychologists and PwMCI, and prototyped them on CARMEN. We present feedback on how PwMCI envision these behaviors supporting goal progress and motivation during an intervention. We report insights on how to support this process with home-deployed robots and propose a framework to support HRI researchers interested in exploring this both in the context of cognitively assistive robots and beyond. This work supports design- ing and implementing CGS on robots, which will ultimately extend the efficacy of robot-delivered health interventions. 
    more » « less
  3. Clinical educators have used robotic and virtual patient simulator systems (RPS) for dozens of years, to help clinical learners (CL) gain key skills to help avoid future patient harm. These systems can simulate human physiological traits; however, they have static faces and lack the realistic depiction of facial cues, which limits CL engagement and immersion. In this article, we provide a detailed review of existing systems in use, as well as describe the possibilities for new technologies from the human–robot interaction and intelligent virtual agents communities to push forward the state of the art. We also discuss our own work in this area, including new approaches for facial recognition and synthesis on RPS systems, including the ability to realistically display patient facial cues such as pain and stroke. Finally, we discuss future research directions for the field.

     
    more » « less
  4. null (Ed.)
    An estimated 11% of adults report experiencing some form of cognitive decline which may be associated with conditions such as stroke or dementia, and can impact their memory, cognition, behavior, and physical abilities. While there are no known pharmacological treatments for many of these conditions, behavioral treatments such as cognitive training can prolong the independence of people with cognitive impairments. These treatments teach metacognitive strategies to compensate for memory difficulties in their everyday lives. Personalizing these treatments to suit the preferences and goals of an individual is critical to improving their engagement and sustainment, as well as maximizing the treatment’s effectiveness. Robots have great potential to facilitate these training regimens and support people with cognitive impairments, their caregivers, and clinicians. This article examines how robots can adapt their behavior to be personalized to an individual in the context of cognitive neurorehabilitation. We provide an overview of existing robots being used to support neurorehabilitation, and identify key principles to working in this space. We then examine state-of-the-art technical approaches to enabling longitudinal behavioral adaptation. To conclude, we discuss our recent work on enabling social robots to automatically adapt their behavior and explore open challenges for longitudinal behavior adaptation. This work will help guide the robotics community as they continue to provide more engaging, effective, and personalized interactions between people and robots. 
    more » « less
  5. In many real-world applications, multiple agents seek to learn how to perform highly related yet slightly different tasks in an online bandit learning protocol. We formulate this problem as the ϵ-multi-player multi-armed bandit problem, in which a set of players concurrently interact with a set of arms, and for each arm, the reward distributions for all players are similar but not necessarily identical. We develop an upper confidence bound-based algorithm, RobustAgg(ϵ), that adaptively aggregates rewards collected by different players. In the setting where an upper bound on the pairwise dissimilarities of reward distributions between players is known, we achieve instance-dependent regret guarantees that depend on the amenability of information sharing across players. We complement these upper bounds with nearly matching lower bounds. In the setting where pairwise dissimilarities are unknown, we provide a lower bound, as well as an algorithm that trades off minimax regret guarantees for adaptivity to unknown similarity structure. 
    more » « less
  6. JESSIE is a robotic system that enables novice programmers to program social robots by expressing high-level specifications. We employ control synthesis with a tangible front-end to allow users to define complex behavior for which we automatically generate control code. We demonstrate JESSIE in the context of enabling clinicians to create personalized treatments for people with mild cognitive impairment (MCI) on a Kuri robot, in little time and without error. We evaluated JESSIE with neuropsychologists who reported high usability and learnability. They gave suggestions for improvement, including increased support for personalization, multi-party programming, collaborative goal setting, and re-tasking robot role post-deployment, which each raise technical and sociotechnical issues in HRI. We exhibit JESSIE's reproducibility by replicating a clinician-created program on a TurtleBot~2. As an open-source means of accessing control synthesis, JESSIE supports reproducibility, scalability, and accessibility of personalized robots for HRI. 
    more » « less
  7. null (Ed.)
  8. We investigate robust data aggregation in a multi-agent online learning setting. In reality, multiple online learning agents are often deployed to perform similar tasks and receive similar feedback. We study how agents can improve their collective performance by sharing information among each other. In this paper, we formulate the ε-multi-player multi-armed bandit problem, in which a set of M players that have similar reward distributions for each arm play concurrently. We develop an upper confidence bound-based algorithm that adaptively aggregates rewards collected by different players. To our best knowledge, we are the first to develop such a scheme in a multi-player bandit learning setting. We show that under the assumption that pairwise distances between the means of the player-dependent distributions for each arm are small, we improve the (collective) regret bound by nearly a factor of M , in comparison with a baseline algorithm in which the players learn individually using the UCB-1 algorithm (Auer et al., 2002). Our algorithm also exhibits a fallback guarantee, namely, if our task similarity assumption fails to hold, our algorithm still has a performance guarantee that cannot be worse than the baseline by a constant factor. Empirically, we validate our algorithm on synthetic data. 
    more » « less