Early childhood is an important developmental period for network formation. However, the observational methods used for measuring young children’s networks present challenges for capturing both positive and negative ties. To overcome these challenges, we explored the use of a bipartite projection backbone model for inferring both negative and positive ties from observational data of children’s play. Using observational data collected in one 3-year-old (N = 17) and one 4-year-old (N = 18) preschool classroom, we examined whether patterns of homophily, triadic closure, and balance in networks inferred using this method matched theoretical and empirical expectations from the early childhood literature. Consistent with this literature, we found that signed networks inferred using a backbone model exhibited gender homophily in positive ties and gender heterophily in negative ties. Additionally, networks inferred from social play exhibited more closed and balanced triads than networks inferred from parallel play. These findings offer evidence of the validity of bipartite projection backbone models for inferring signed networks from preschoolers’ observed play.
more »
« less
Revealing hazard-exposure heterophily as a latent characteristic of community resilience in social-spatial networks
Abstract We present a latent characteristic in socio-spatial networks, hazard-exposure heterophily, to capture the extent to which populations with dissimilar hazard exposure could assist each other through social ties. Heterophily is the tendency of unlike individuals to form social ties. Conversely, populations in hazard-prone spatial areas with significant hazard-exposure similarity, homophily, would lack sufficient resourcefulness to aid each other to lessen the impact of hazards. In the context of the Houston metropolitan area, we use Meta’s Social Connectedness data to construct a socio-spatial network in juxtaposition with flood exposure data from National Flood Hazard Layer to analyze flood hazard exposure of spatial areas. The results reveal the extent and spatial variation of hazard-exposure heterophily in the study area. Notably, the results show that lower-income areas have lower hazard-exposure heterophily possibly caused by income segregation and the tendency of affordable housing development to be located in flood zones. Less resourceful social ties in hazard-prone areas due to their high-hazard-exposure homophily may inhibit low-income areas from better coping with hazard impacts and could contribute to their slower recovery. Overall, the results underscore the significance of characterizing hazard-exposure heterophily in socio-spatial networks to reveal community vulnerability and resilience to hazards.
more »
« less
- Award ID(s):
- 1846069
- PAR ID:
- 10486575
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The eastern North Carolina Coastal Area Management Act region is one of the most hurricane-prone areas of the United States. Hurricanes incur substantial damage and economic losses because structures located near the coast tend to be high value as well as particularly exposed. To bolster disaster mitigation and community resilience, it is crucial to understand how hurricane hazards drive social and economic impacts. We integrate detailed hazard simulations, property data, and labor compensation estimates to comprehensively analyze hurricanes’ economic impacts. This study investigates the spatial distribution of probabilistic hurricane hazards, and concomitant property losses and labor impacts, pinpointing particularly hard hit areas. Relationships between capital and labor losses, social vulnerability, and asset values reveal the latter as the primary determinant of overall economic consequences.more » « less
-
Abstract Increased wildfire activity has raised concerns among communities about how to assess and prepare for this threat. There is a need for wildfire hazard assessment approaches that capture local variability to inform decisions, produce results understood by the public, and are updatable in a timely manner. We modified an existing approach to assess decadal wildfire hazards based primarily on ember dispersal and wildfire proximity, referencing landscape changes from 1984 through 2014. Our modifications created a categorical flammability hazard scheme, rather than dichotomous, and integrated wildfire exposure results across spatial scales. We used remote sensed land cover from four historical decadal points to create flammability hazard and wildfire exposure maps for three arctic communities (Anchorage and Fairbanks, Alaska and Whitehorse, Yukon). Within the Fairbanks study area, we compared 2014 flammability hazard, wildfire exposure, and FlamMap burn probabilities among burned (2014–2023) and unburned areas. Unlike burn probabilities, there were significantly higher in exposure values among burned and unburned locations (Wilcoxon;p < 0.001) and exposure rose as flammability hazard classes increased (Kruskal–Wallis;p < 0.001). Very high flammability hazard class supported 75% of burned areas and burns tended to occur in areas with 60% exposure or greater. Areas with high exposure values are more prone to burn and thus desirable for mitigation actions. By working with wildfire practitioners and communities, we created a tool that rapidly assesses wildfire hazards and is easily modified to help identify and prioritize mitigation activities.more » « less
-
Garcia-Ayllon_Veintimilla, Salvador (Ed.)Historical information about floods is not commonly used in the US to inform land use planning decisions. Rather, the current approach to managing floods is based on static maps derived from computer simulations of the area inundated by floods of specified return intervals. These maps provide some information about flood hazard, but they do not reflect the underlying processes involved in creating a flood disaster, which typically include increased exposure due to building on flood-prone land, nor do they account for the greater hazard resulting from wildfire. We developed and applied an approach to analyze how exposure has evolved in flood hazard zones in Montecito, California, an area devastated by post-fire debris flows in January 2018. By combining historical flood records of the past 200 years, human development records of the past 100 years, and geomorphological understanding of debris flow generation processes, this approach allows us to look at risk as a dynamic process influenced by physical and human factors, instead of a static map. Results show that floods after fires, in particular debris flows and debris laden floods, are very common in Montecito (15 events in the last 200 years), and that despite policies discouraging developments in hazard areas, developments in hazard zones have increased substantially since Montecito joined the National Flood Insurance Program in 1979.We also highlight the limitation of using conventional Flood Insurance Rate Maps (FIRMs) to manage land use in alluvial fan areas such as Montecito. The knowledge produced in this project can help Montecito residents better understand how they came to be vulnerable to floods and identify action they are taking now that might increase or reduce their vulnerability to the next big flood. This science-history-centric approach to understand hazard and exposure evolution using geographic information systems (GIS) and historical records, is generalizable to other communities seeking to better understand the nature of the hazard they are exposed to and some of the root causes of their vulnerabilities, in other words, both the natural and social processes producing disasters.more » « less
-
Communities near the wildland urban interface (WUI) are exposed to a mix of three interconnected hazards (wildfire, flood, and mudslide), and understanding multi-hazard perceptions is critically important for emergency preparation and hazard mitigation—particularly given the WUI’s rapid expansion and intensifying environmental hazards. Based on a survey of residents living near recent burn scars in Southern California, we document cross-over effects in hazard perceptions, where resident experience with one hazard was associated with greater hazard rankings for other hazards. Additionally, for all three hazards analyzed we document perceptions of increasing hazard levels with increasing spatial scales (home, near-home, neighborhood, and community), providing evidence of spatial optimism, or the tendency to discount proximate hazards. This study stresses the importance of using a multi-hazard and multi-scale approach for understanding and responding to local level environmental hazards.more » « less
An official website of the United States government

