skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detecting GNSS spoofing using deep learning
Abstract Global Navigation Satellite System (GNSS) is pervasively used in position, navigation, and timing (PNT) applications. As a consequence, important assets have become vulnerable to intentional attacks on GNSS, where of particular relevance is spoofing transmissions that aim at superseding legitimate signals with forged ones in order to control a receiver’s PNT computations. Detecting such attacks is therefore crucial, and this article proposes to employ an algorithm based on deep learning to achieve the task. A data-driven classifier is considered that has two components: a deep learning model that leverages parallelization to reduce its computational complexity and a clustering algorithm that estimates the number and parameters of the spoofing signals. Based on the experimental results, it can be concluded that the proposed scheme exhibits superior performance compared to the existing solutions, especially under moderate-to-high signal-to-noise ratios.  more » « less
Award ID(s):
2326559 1845833
PAR ID:
10486854
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
EURASIP Journal on Advances in Signal Processing
Volume:
2024
Issue:
1
ISSN:
1687-6180
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A resilient positioning, navigation, and timing (PNT) system is a necessity for the robust navigation of autonomous vehicles (AVs). A global navigation satellite system (GNSS) provides satellite-based PNT services. However, a spoofer can tamper the authentic GNSS signal and could transmit wrong position information to an AV. Therefore, an AV must have the capability of real-time detection of spoofing attacks related to PNT receivers, whereby it will help the end-user (the AV in this case) to navigate safely even if the GNSS is compromised. This paper aims to develop a deep reinforcement learning (RL)-based turn-by-turn spoofing attack detection method using low-cost in-vehicle sensor data. We have utilized the Honda Research Institute Driving Dataset to create attack and non-attack datasets to develop a deep RL model and have evaluated the performance of the deep RL-based attack detection model. We find that the accuracy of the deep RL model ranges from 99.99% to 100%, and the recall value is 100%. Furthermore, the precision ranges from 93.44% to 100%, and the f1 score ranges from 96.61% to 100%. Overall, the analyses reveal that the RL model is effective in turn-by-turn spoofing attack detection. 
    more » « less
  2. The security of Unmanned Aerial System (UAS) networks is becoming crucial as their number and application in several fields are increasing every day. For navigation and positioning, the Global Navigation System (GPS) is essential as it provides an accurate location for the UAS. However, since the civilian GPS signals are open and unencrypted, attackers target them in different ways such as spoofing attacks. To address this security concern, we propose a comparison of several tree-based machine learning models, namely Random Forest, Gradient Boost, XGBoost, and LightGBM, to detect GPS spoofing attacks. In this work, the dataset was built of real GPS signals that were collected using a Software Defined Radio unit and different types of simulated GPS spoofing attacks. The results show that XGBoost has the best accuracy (95.52%) and fastest detection time (2ms), which makes this model appropriate for UAS applications. 
    more » « less
  3. In Global Navigation Satellite System (GNSS), a spoofing attack consists of forged signals which possibly cause the attacked receivers to deduce a false position, a false clock, or both. In contrast to simplistic spoofing, the induced spoofing captures the victim tracking loops by gradually adjusting it’s parameters, e.g., code phase and power. Then the victims smoothly deviates from the correct position or timing. Therefore, it is more difficult to detect the induced spoofing than the simplistic one. In this paper, by utilizing the dynamic nature of such gradual adjustment process, an induced spoofing detection method is proposed based on the S-curve-bias (SCB). Firstly, SCB in the inducing process is theoretically derived. Then, in order to detect the induced spoofing, a detection metric is defined. After that, a series of experiments using the Texas spoofing test battery (TEXBAT) are performed to demonstrate the effectiveness of the proposed algorithm. 
    more » « less
  4. Unmanned Aerial Systems (UAS) heavily depend on the Global Positioning System (GPS) for navigation. However, the unencrypted civilian GPS signals are subject to different types of threats, including GPS spoofing attacks. In this paper, we evaluate five instance-based learning models for GPS spoofing detection in UAS, namely K Nearest Neighbor, Radius Neighbor, Linear Support Vector Machine (SVM), C-SVM, and Nu-SVM. We used software-defined radio units to collect and extract features from satellite signals. Then, we simulated three types of GPS spoofing attacks specifically the simplistic, intermediate, and sophisticated attacks. The evaluation results show that Nu-SVM outperforms the other instance learning classifiers in terms of accuracy, probability of detection, probability of false alarm, and probability of misdetection. In addition, the model shows good computational performance regarding memory usage and processing time in the detection phase. 
    more » « less
  5. NA (Ed.)
    Unmanned Aerial Systems have become ubiquitous and are now widely used in commercial, consumer, and military applications. Their widespread use is due to a combination of their low cost, high capability, and ability to perform tasks and go places that are not easy or safe for humans. Most UAS platforms are dependent on Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), to provide positioning information for navigation and flight control. Without reliable GPS signals, the flight path cannot be trusted, and flight safety cannot be assured. However, GPS is vulnerable to several types of malicious attacks, including jamming, spoofing, or physical attacks on the GPS constellation itself. Additionally, there are environments in which GPS reception is not always possible, a key example being urban canyon areas where line-of-site to the GPS satellite constellation may be blocked or obscured by large obstacles such as buildings. Numerous methods have been proposed for position estimation in GPS denied environments. However, these methods have significant limitations and typically exhibit poor performance in certain environments and scenarios. This paper analyzes the strengths and weaknesses of existing alternate positioning methods and describes a framework where multiple positioning solutions are jointly employed to construct an optimal position estimate. The proposed framework aims to reduce computation complexity and yield good positioning performance across a wide variety of environments. 
    more » « less