Abstract BackgroundWoody biomass has been considered as a promising feedstock for biofuel production via thermochemical conversion technologies such as fast pyrolysis. Extensive Life Cycle Assessment studies have been completed to evaluate the carbon intensity of woody biomass-derived biofuels via fast pyrolysis. However, most studies assumed that woody biomass such as forest residues is a carbon–neutral feedstock like annual crops, despite a distinctive timeframe it takes to grow woody biomass. Besides, few studies have investigated the impacts of forest dynamics and the temporal effects of carbon on the overall carbon intensity of woody-derived biofuels. This study addressed such gaps by developing a life-cycle carbon analysis framework integrating dynamic modeling for forest and biorefinery systems with a time-based discounted Global Warming Potential (GWP) method developed in this work. The framework analyzed dynamic carbon and energy flows of a supply chain for biofuel production from pine residues via fast pyrolysis. ResultsThe mean carbon intensity of biofuel given by Monte Carlo simulation across three pine growth cases ranges from 40.8–41.2 g CO2e MJ−1(static method) to 51.0–65.2 g CO2e MJ−1(using the time-based discounted GWP method) when combusting biochar for energy recovery. If biochar is utilized as soil amendment, the carbon intensity reduces to 19.0–19.7 g CO2e MJ−1(static method) and 29.6–43.4 g CO2e MJ−1in the time-based method. Forest growth and yields (controlled by forest management strategies) show more significant impacts on biofuel carbon intensity when the temporal effect of carbon is taken into consideration. Variation in forest operations and management (e.g., energy consumption of thinning and harvesting), on the other hand, has little impact on the biofuel carbon intensity. ConclusionsThe carbon temporal effect, particularly the time lag of carbon sequestration during pine growth, has direct impacts on the carbon intensity of biofuels produced from pine residues from a stand-level pine growth and management point of view. The carbon implications are also significantly impacted by the assumptions of biochar end-of-life cases and forest management strategies.
more »
« less
Soil organic carbon change can reduce the climate benefits of biofuel produced from forest residues
Replacing fossil fuels with biofuels offers a promising path to decarbonizing the transportation sector, a major source of greenhouse gas emissions (GHGs). Utilizing waste biomass such as forest residues is particularly appealing, as it avoids land-use change and associated GHG emissions. Current biofuel life cycle assessment (LCA) adopted by regulatory agencies considers forest residues as carbon-neutral feedstock and typically ignores soil organic carbon (SOC) changes from residue removal. Our study quantifies SOC change caused by removing forest residues in the Southern US and found that they can make a substantial contribution to the carbon footprint of biofuel derived from forest residues. Our results emphasize the need to include soil carbon assessment in future LCAs, biofuel policy, and forest management, even when waste biomass is used and no land-use change is involved.
more »
« less
- Award ID(s):
- 2038439
- PAR ID:
- 10487180
- Publisher / Repository:
- Joule
- Date Published:
- Journal Name:
- Joule
- ISSN:
- 2542-4351
- Subject(s) / Keyword(s):
- biofuel greenhouse gas emissions soil organic carbon forest residues life cycle assessment fast pyrolysis fuel policy carbon intensity forest management climate policy
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Soil organic carbon (SOC) represents the largest terrestrial carbon pool. Effectively monitoring SOC at high spatial resolution is crucial for estimating carbon budgets at the ecosystem scale and informing climate change mitigation efforts at the regional scale. Traditional soil sampling methods, however, are laborious and expensive. Remote sensing platforms can be used to survey large landscapes to meet the need for rapid and cost-effective approaches for quantifying SOC at landscape to regional scales, if relationships between remotely sensed variables and SOC can be established. We developed a workflow to analyze and predict SOC content based on National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) remote sensing data. First, we benchmarked related tools and developed reproducible workflows using NEON remote sensing datasets. Hyperspectral data were extracted from the locations where NEON soil data exist. Additional variables from the LiDAR data and key metadata (climate and land cover) were extracted for those locations. Random Forest and Partial Least Squares Regression techniques were then used to create models for fine-scale SOC prediction. Cross-validation was embedded in the model creation step. The most important covariates were selected through recursive feature elimination, stepwise selection, and expert judgment. Preliminary results indicate that machine learning models can re-produce SOC measurements in testing datasets. Key predictors include topographic variables, vegetation indices, and specific wavelength bands in hyperspectral images. We are further validating our algorithms using SOC data from ISCN (International Soil Carbon Network) and SoDaH (SOils DAta Harmonization database) that are co-located with NEON sites. We are creating high-resolution SOC maps for 0-30 cm depth at NEON sites and testing our algorithms for different land use types. Our work paves the way for a broader assessment of SOC stocks using remote sensing observations, and our high-resolution SOC maps will potentially help quantify carbon budgets across heterogeneous landscapes.more » « less
-
Abstract Scenarios that limit global warming to below 2 °C by 2100 assume significant land-use change to support large-scale carbon dioxide (CO2) removal from the atmosphere by afforestation/reforestation, avoided deforestation, and Biomass Energy with Carbon Capture and Storage (BECCS). The more ambitious mitigation scenarios require even greater land area for mitigation and/or earlier adoption of CO2removal strategies. Here we show that additional land-use change to meet a 1.5 °C climate change target could result in net losses of carbon from the land. The effectiveness of BECCS strongly depends on several assumptions related to the choice of biomass, the fate of initial above ground biomass, and the fossil-fuel emissions offset in the energy system. Depending on these factors, carbon removed from the atmosphere through BECCS could easily be offset by losses due to land-use change. If BECCS involves replacing high-carbon content ecosystems with crops, then forest-based mitigation could be more efficient for atmospheric CO2removal than BECCS.more » « less
-
Abstract Agricultural soils play a dual role in regulating the Earth's climate by releasing or sequestering carbon dioxide (CO2) in soil organic carbon (SOC) and emitting non‐CO2greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). To understand how agricultural soils can play a role in climate solutions requires a comprehensive assessment of net soil GHG balance (i.e., sum of SOC‐sequestered CO2and non‐CO2GHG emissions) and the underlying controls. Herein, we used a model‐data integration approach to understand and quantify how natural and anthropogenic factors have affected the magnitude and spatiotemporal variations of the net soil GHG balance in U.S. croplands during 1960–2018. Specifically, we used the dynamic land ecosystem model for regional simulations and used field observations of SOC sequestration rates and N2O and CH4emissions to calibrate, validate, and corroborate model simulations. Results show that U.S. agricultural soils sequestered Tg CO2‐C year−1in SOC (at a depth of 3.5 m) during 1960–2018 and emitted Tg N2O‐N year−1and Tg CH4‐C year−1, respectively. Based on the GWP100 metric (global warming potential on a 100‐year time horizon), the estimated national net GHG emission rate from agricultural soils was Tg CO2‐eq year−1, with the largest contribution from N2O emissions. The sequestered SOC offset ~28% of the climate‐warming effects resulting from non‐CO2GHG emissions, and this offsetting effect increased over time. Increased nitrogen fertilizer use was the dominant factor contributing to the increase in net GHG emissions during 1960–2018, explaining ~47% of total changes. In contrast, reduced cropland area, the adoption of agricultural conservation practices (e.g., reduced tillage), and rising atmospheric CO2levels attenuated net GHG emissions from U.S. croplands. Improving management practices to mitigate N2O emissions represents the biggest opportunity for achieving net‐zero emissions in U.S. croplands. Our study highlights the importance of concurrently quantifying SOC‐sequestered CO2and non‐CO2GHG emissions for developing effective agricultural climate change mitigation measures.more » « less
-
Abstract This study investigates uncertainties in greenhouse gas (GHG) emission factors related to switchgrass‐based biofuel production in Michigan. Using three life cycle assessment (LCA) databases—US lifecycle inventory (USLCI) database, GREET, and Ecoinvent—each with multiple versions, we recalculated the global warming intensity (GWI) and GHG mitigation potential in a static calculation. Employing Monte Carlo simulations along with local and global sensitivity analyses, we assess uncertainties and pinpoint key parameters influencing GWI. The convergence of results across our previous study, static calculations, and Monte Carlo simulations enhances the credibility of estimated GWI values. Static calculations, validated by Monte Carlo simulations, offer reasonable central tendencies, providing a robust foundation for policy considerations. However, the wider range observed in Monte Carlo simulations underscores the importance of potential variations and uncertainties in real‐world applications. Sensitivity analyses identify biofuel yield, GHG emissions of electricity, and soil organic carbon (SOC) change as pivotal parameters influencing GWI. Decreasing uncertainties in GWI may be achieved by making greater efforts to acquire more precise data on these parameters. Our study emphasizes the significance of considering diverse GHG factors and databases in GWI assessments and stresses the need for accurate electricity fuel mixes, crucial information for refining GWI assessments and informing strategies for sustainable biofuel production.more » « less
An official website of the United States government

