skip to main content


This content will become publicly available on May 29, 2024

Title: An Open Approach to Energy-Efficient Autonomous Mobile Robots
Autonomous mobile robots (AMRs) have the capability to execute a wide range of tasks with minimal human intervention. However, one of the major limitations of AMRs is their limited battery life, which often results in interruptions to their task execution and the need to reach the nearest charging station. Optimizing energy consumption in AMRs has become a critical challenge in their deployment. Through empirical studies on real AMRs, we have identified a lack of coordination between computation and control as a major source of energy inefficiency. In this paper, we propose a comprehensive energy prediction model that provides real-time energy consumption for each component of the AMR. Additionally, we propose three path models to address the obstacle avoidance problem for AMRs. To evaluate the performance of our energy prediction and path models, we have developed a customized AMR called Donkey, which has the capability for fine-grained (millisecond-level) end-to-end power profiling. Our energy prediction model demonstrated an accuracy of over 90% in our evaluations. Finally, we applied our energy prediction model to obstacle avoidance and guided energy-efficient path selection, resulting in up to a 44.8% reduction in energy consumption compared to the baseline.  more » « less
Award ID(s):
1724227
NSF-PAR ID:
10487735
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2023 IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
11569 to 11575
Subject(s) / Keyword(s):
["Energy consumption","Computational modeling","Predictive models","Charging stations","Energy efficiency","Real-time systems","Batteries"]
Format(s):
Medium: X
Location:
London, United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. Autonomous mobile robots (AMRs) have been widely utilized in industry to execute various on-board computer-vision applications including autonomous guidance, security patrol, object detection, and face recognition. Most of the applications executed by an AMR involve the analysis of camera images through trained machine learning models. Many research studies on machine learning focus either on performance without considering energy efficiency or on techniques such as pruning and compression to make the model more energy-efficient. However, most previous work do not study the root causes of energy inefficiency for the execution of those applications on AMRs. The computing stack on an AMR accounts for 33% of the total energy consumption and can thus highly impact the battery life of the robot. Because recharging an AMR may disrupt the application execution, it is important to efficiently utilize the available energy for maximized battery life. In this paper, we first analyze the breakdown of power dissipation for the execution of computer-vision applications on AMRs and discover three main root causes of energy inefficiency: uncoordinated access to sensor data, performance-oriented model inference execution, and uncoordinated execution of concurrent jobs. In order to fix these three inefficiencies, we propose E2M, an energy-efficient middleware software stack for autonomous mobile robots. First, E2M regulates the access of different processes to sensor data, e.g., camera frames, so that the amount of data actually captured by concurrently executing jobs can be minimized. Second, based on a predefined per-process performance metric (e.g., safety, accuracy) and desired target, E2M manipulates the process execution period to find the best energy-performance trade off. Third, E2M coordinates the execution of the concurrent processes to maximize the total contiguous sleep time of the computing hardware for maximized energy savings. We have implemented a prototype of E2M on a real-world AMR. Our experimental results show that, compared to several baselines, E2M leads to 24% energy savings for the computing platform, which translates into an extra 11.5% of battery time and 14 extra minutes of robot runtime, with a performance degradation lower than 7.9% for safety and 1.84% for accuracy. 
    more » « less
  2. Abstract

    Density functional theory (DFT) has been a critical component of computational materials research and discovery for decades. However, the computational cost of solving the central Kohn–Sham equation remains a major obstacle for dynamical studies of complex phenomena at-scale. Here, we propose an end-to-end machine learning (ML) model that emulates the essence of DFT by mapping the atomic structure of the system to its electronic charge density, followed by the prediction of other properties such as density of states, potential energy, atomic forces, and stress tensor, by using the atomic structure and charge density as input. Our deep learning model successfully bypasses the explicit solution of the Kohn-Sham equation with orders of magnitude speedup (linear scaling with system size with a small prefactor), while maintaining chemical accuracy. We demonstrate the capability of this ML-DFT concept for an extensive database of organic molecules, polymer chains, and polymer crystals.

     
    more » « less
  3. Evaluating AMR parsing accuracy involves comparing pairs of AMR graphs. The major evaluation metric, SMATCH (Cai and Knight,2013), searches for one-to-one mappings between the nodes of two AMRs with a greedy hill-climbing algorithm, which leads to search errors. We propose SEMBLEU, a robust metric that extends BLEU (Papineni et al., 2002) to AMRs. It does not suffer from search errors and considers non-local correspondences in addition to local ones. SEMBLEU is fully content-driven and punishes situations where a system’s output does not preserve most information from the input. Preliminary experiments on both sentence and corpus levels show that SEMBLEU has slightly higher consistency with human judgments than SMATCH. Our code is available athttp://github.com/freesunshine0316/sembleu. 
    more » « less
  4. While distributed computing infrastructures can provide infrastructure-level techniques for managing energy consumption, application-level energy consumption models have also been developed to support energy-efficient scheduling and resource provisioning algorithms. In this work, we analyze the accuracy of a widely-used application-level model that have been developed and used in the context of scientific workflow executions. To this end, we profile two production scientific workflows on a distributed platform instrumented with power meters. We then conduct an analysis of power and energy consumption measurements. This analysis shows that power consumption is not linearly related to CPU utilization and that I/O operations significantly impact power, and thus energy, consumption. We then propose a power consumption model that accounts for I/O operations, including the impact of waiting for these operations to complete, and for concurrent task executions on multi-socket, multi-core compute nodes. We implement our proposed model as part of a simulator that allows us to draw direct comparisons between real-world and modeled power and energy consumption. We find that our model has high accuracy when compared to real-world executions. Furthermore, our model improves accuracy by about two orders of magnitude when compared to the traditional models used in the energy-efficient workflow scheduling literature. 
    more » « less
  5. null (Ed.)
    Given a spatial graph, an origin and a destination, and on-board diagnostics (OBD) data, the energy-efficient path selection problem aims to find the path with the least expected energy consumption (EEC). Two main objectives of smart cities are sustainability and prosperity, both of which benefit from reducing the energy consumption of transportation. The challenges of the problem include the dependence of EEC on the physical parameters of vehicles, the autocorrelation of the EEC on segments of paths, the high computational cost of EEC estimation, and potential negative EEC. However, the current cost estimation models for the path selection problem do not consider vehicles’ physical parameters. Moreover, the current path selection algorithms follow the “path + edge” pattern when exploring candidate paths, resulting in redundant computation. Our preliminary work introduced a physics-guided energy consumption model and proposed a maximal-frequented-path-graph shortest-path algorithm using the model. In this work, we propose an informed algorithm using an admissible heuristic and propose an algorithm to handle negative EEC. We analyze the proposed algorithms theoretically and evaluate the proposed algorithms via experiments with real-world and synthetic data. We also conduct two case studies using real-world data and a road test to validate the proposed method. 
    more » « less