skip to main content


Title: Nanoscale visualization and spectral fingerprints of the charge order in ScV6Sn6 distinct from other kagome metals
Abstract

Charge density waves (CDWs) in kagome metals have been tied to many exotic phenomena. Here, using spectroscopic-imaging scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we study the charge order in kagome metal ScV6Sn6. The similarity of electronic band structures of ScV6Sn6and TbV6Sn6(where charge ordering is absent) suggests that charge ordering in ScV6Sn6is unlikely to be primarily driven by Fermi surface nesting of the Van Hove singularities. In contrast to the CDW state of cousin kagome metals, we find no evidence supporting rotation symmetry breaking. Differential conductance dI/dVspectra show a partial gapΔ1CO ≈ 20 meV at the Fermi level. Interestingly, dI/dVmaps reveal that charge modulations exhibit an abrupt phase shift as a function of energy at energy much higher thanΔ1CO, which we attribute to another spectral gap. Our experiments reveal a distinctive nature of the charge order in ScV6Sn6with fundamental differences compared to other kagome metals.

 
more » « less
Award ID(s):
2216080
NSF-PAR ID:
10487883
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Materials
Volume:
9
Issue:
1
ISSN:
2397-4648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Kagomé metals are widely recognized, versatile platforms for exploring topological properties, unconventional electronic correlations, magnetic frustration, and superconductivity. In theRV6Sn6family of materials (R= Sc, Y, Lu), ScV6Sn6hosts an unusual charge density wave ground state as well as structural similarities with theAV3Sb5system (A= K, Cs, Rb). In this work, we combine Raman scattering spectroscopy with first-principles lattice dynamics calculations to reveal phonon mixing processes in the charge density wave state of ScV6Sn6. In the low temperature phase, we find at least four new peaks in the vicinity of the V-containing totally symmetric mode near 240 cm−1suggesting that the density wave acts to mix modes ofP6/mmmand$$R\bar{3}m$$R3¯msymmetry - a result that we quantify by projecting phonons of the high symmetry state onto those of the lower symmetry structure. We also test the stability of the short-range ordered density wave state under compression and propose that both physical and chemical pressure quench the effect. We discuss these findings in terms of symmetry and the structure-property trends that can be unraveled in this system.

     
    more » « less
  2. Abstract

    Geometrically frustrated kagome lattices are raising as novel platforms to engineer correlated topological electron flat bands that are prominent to electronic instabilities. Here, we demonstrate a phonon softening at thekz = πplane in ScV6Sn6. The low energy longitudinal phonon collapses at ~98 K andq = $$\frac{1}{3}\frac{1}{3}\frac{1}{2}$$131312due to the electron-phonon interaction, without the emergence of long-range charge order which sets in at a different propagation vectorqCDW = $$\frac{1}{3}\frac{1}{3}\frac{1}{3}$$131313. Theoretical calculations corroborate the experimental finding to indicate that the leading instability is located at$$\frac{1}{3}\frac{1}{3}\frac{1}{2}$$131312of a rather flat mode. We relate the phonon renormalization to the orbital-resolved susceptibility of the trigonal Sn atoms and explain the approximately flat phonon dispersion. Our data report the first example of the collapse of a kagome bosonic mode and promote the 166 compounds of kagomes as primary candidates to explore correlated flat phonon-topological flat electron physics.

     
    more » « less
  3. Abstract

    Recently, kagome lattice materials have emerged as a new model material platform for discovering and engineering novel quantum phases of matter. In this work, we elucidate the driving mechanism of the$$\sqrt{{{3}}}$$3×$$\sqrt{{{3}}}$$3charge order in a newly discovered kagome metal ScV6Sn6. Through multimodal investigations combining angle-resolved photoemission spectroscopy, phonon dispersion calculations, and phase diagram study, we identify the central role of unstable planar Sn and Sc phonon modes, while the electronic instability and van Hove singularities originating from the V kagome lattice have a marginal influence. Our results highlight that the$$\sqrt{{{3}}}$$3×$$\sqrt{{{3}}}$$3charge order in ScV6Sn6is fundamentally distinguished from the electronically driven 2 × 2 charge order in the canonical kagome system AV3Sb5, uncovering a new mechanism to induce symmetry-breaking phase transition in kagome lattice materials.

     
    more » « less
  4. Abstract

    Metals with kagome lattice provide bulk materials to host both the flat-band and Dirac electronic dispersions. A new family of kagome metals is recently discovered inAV6Sn6. The Dirac electronic structures of this material needs more experimental evidence to confirm. In the manuscript, we investigate this problem by resolving the quantum oscillations in both electrical transport and magnetization in ScV6Sn6. The revealed orbits are consistent with the electronic band structure models. Furthermore, the Berry phase of a dominating orbit is revealed to be aroundπ, providing direct evidence for the topological band structure, which is consistent with calculations. Our results demonstrate a rich physics and shed light on the correlated topological ground state of this kagome metal.

     
    more » « less
  5. Abstract

    The class ofAV3Sb5(A=K, Rb, Cs) kagome metals hosts unconventional charge density wave states seemingly intertwined with their low temperature superconducting phases. The nature of the coupling between these two states and the potential presence of nearby, competing charge instabilities however remain open questions. This phenomenology is strikingly highlighted by the formation of two ‘domes’ in the superconducting transition temperature upon hole-doping CsV3Sb5. Here we track the evolution of charge correlations upon the suppression of long-range charge density wave order in the first dome and into the second of the hole-doped kagome superconductor CsV3Sb5−xSnx. Initially, hole-doping drives interlayer charge correlations to become short-ranged with their periodicity diminished along the interlayer direction. Beyond the peak of the first superconducting dome, the parent charge density wave state vanishes and incommensurate, quasi-1D charge correlations are stabilized in its place. These competing, unidirectional charge correlations demonstrate an inherent electronic rotational symmetry breaking in CsV3Sb5, and reveal a complex landscape of charge correlations within its electronic phase diagram. Our data suggest an inherent 2kfcharge instability and competing charge orders in theAV3Sb5class of kagome superconductors.

     
    more » « less