Abstract We present a class of two-dimensional randomized plaquette models, where the multi-spin interaction term, referred to as the plaquette term, is replaced by a single-site spin term with a probability of . By varyingp, we observe a ground state phase transition, or equivalently, a phase transition of the symmetry operator. We find that as we varyp, the symmetry operator changes from being extensive to being localized in space. These models can be equivalently understood as 1+1D randomized cellular automaton dynamics, allowing the 2D transition to be interpreted as a 1+1D dynamical absorbing phase transition. In this paper, our primary focus is on the plaquette term with three or five-body interactions, where we explore the universality classes of the transitions. Specifically, for the model with five-body interaction, we demonstrate that it belongs to the same universality class as the measurement-induced entanglement phase transition observed in 1+1D Clifford dynamics, as well as the boundary entanglement transition of the 2D cluster state induced by random bulk Pauli measurements. This work establishes a connection between transitions in classical spin models, cellular automata, and hybrid random circuits. 
                        more » 
                        « less   
                    
                            
                            Entanglement dynamics in U(1) symmetric hybrid quantum automaton circuits
                        
                    
    
            We study the entanglement dynamics of quantum automaton (QA) circuits in the presence of U(1) symmetry. We find that the second Rényi entropy grows diffusively with a logarithmic correction as , saturating the bound established by Huang \cite{Huang_2020}. Thanks to the special feature of QA circuits, we understand the entanglement dynamics in terms of a classical bit string model. Specifically, we argue that the diffusive dynamics stems from the rare slow modes containing extensively long domains of spin 0s or 1s. Additionally, we investigate the entanglement dynamics of monitored QA circuits by introducing a composite measurement that preserves both the U(1) symmetry and properties of QA circuits. We find that as the measurement rate increases, there is a transition from a volume-law phase where the second Rényi entropy persists the diffusive growth (up to a logarithmic correction) to a critical phase where it grows logarithmically in time. This interesting phenomenon distinguishes QA circuits from non-automaton circuits such as U(1)-symmetric Haar random circuits, where a volume-law to an area-law phase transition exists, and any non-zero rate of projective measurements in the volume-law phase leads to a ballistic growth of the Rényi entropy. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2219735
- PAR ID:
- 10479064
- Publisher / Repository:
- Quantum
- Date Published:
- Journal Name:
- Quantum
- Volume:
- 7
- ISSN:
- 2521-327X
- Page Range / eLocation ID:
- 1200
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Recently, many experiments have been conducted with the goal of demonstrating a quantum advantage over classical computation. One popular framework for these experiments is Gaussian boson sampling, where quadratic photonic input states are interfered via a linear optical unitary and subsequently measured in the Fock basis. In this paper, we study the modal entanglement of the output states in this framework just before the measurement stage. Specifically, we compute Page curves as measured by various Rényi- entropies, where the Page curve describes the entanglement between two partitioned groups of output modes averaged over all linear optical unitaries. We derive these formulas for (i.e., the von Neumann entropy) and, more generally, for all positive integer , in the asymptotic limit of infinite number of modes and for input states that are composed of single-mode-squeezed-vacuum state with equal squeezing strength. We then analyze the limiting behaviors when the squeezing is small and large. Having determined the averages, we then explicitly calculate the Rényi- variance for integers and are able to show that these entropies are weakly typical. Published by the American Physical Society2025more » « less
- 
            Adaptive quantum circuits—where a quantum many-body state is controlled using measurements and conditional unitary operations—are a powerful paradigm for state preparation and quantum error-correction tasks. They can support two types of nonequilibrium quantum phase transitions: measurement-induced transitions between volume- and area-law-entangled steady states and control-induced transitions where the system falls into an absorbing state or, more generally, an orbit visiting several absorbing states. Within this context, nonlocal conditional operations can alter the critical properties of the two transitions and the topology of the phase diagram. Here, we consider the scenario where the measurements are , in order to engineer efficient control onto dynamical trajectories. Motivated by Rydberg-atom arrays, we consider a locally constrained model with global sublattice magnetization measurements and local correction operations to steer the system’s dynamics onto a many-body orbit with finite recurrence time. The model has a well-defined classical limit, which we leverage to aid our analysis of the control transition. As a function of the density of local correction operations, we find control and entanglement transitions with continuously varying critical exponents. For sufficiently high densities of local correction operations, we find that both transitions acquire a dynamical critical exponent , reminiscent of criticality in long-range power-law interacting systems. At low correction densities, we find that the criticality reverts to a short-range nature with . In the long-range regime, the control and entanglement transitions are indistinguishable to within the resolution of our finite-size numerics, while in the short-range regime we find evidence that the transitions become distinct. We conjecture that the effective long-range criticality mediated by collective measurements is essential in driving the two transitions together. Published by the American Physical Society2025more » « less
- 
            Monitored quantum circuits exhibit entanglement transitions at certain measurement rates. Such a transition separates phases characterized by how much information an observer can learn from the measurement outcomes. We study SU(2)-symmetric monitored quantum circuits, using exact numerics and a mapping onto an effective statistical-mechanics model. Due to the symmetry's non-Abelian nature, measuring qubit pairs allows for nontrivial entanglement scaling even in the measurement-only limit. We find a transition between a volume-law entangled phase and a critical phase whose diffusive purification dynamics emerge from the non-Abelian symmetry. Additionally, we identify a “spin-sharpening transition.” Across the transition, the rate at which measurements reveal information about the total spin quantum number changes parametrically with system size.more » « less
- 
            We study the problem of implementing arbitrary permutations of qubits under interaction constraints in quantum systems that allow for arbitrarily fast local operations and classical communication (LOCC). In particular, we show examples of speedups over swap-based and more general unitary routing methods by distributing entanglement and using LOCC to perform quantum teleportation. We further describe an example of an interaction graph for which teleportation gives a logarithmic speedup in the worst-case routing time over swap-based routing. We also study limits on the speedup afforded by quantum teleportation—showing an upper bound on the separation in routing time for any interaction graph—and give tighter bounds for some common classes of graphs. Published by the American Physical Society2024more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    