skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A generalized ODE susceptible-infectious-susceptible compartmental model with potentially periodic behavior
Differential equation compartmental models are crucial tools for forecasting and analyzing disease trajectories. Among these models, those dealing with only susceptible and infectious individuals are particularly useful as they offer closed-form expressions for solutions, namely the logistic equation. However, the logistic equation has limited ability to describe disease trajectories since its solutions must converge monotonically to either the disease-free or endemic equilibrium, depending on the parameters. Unfortunately, many diseases exhibit periodic cycles, and thus, do not converge to equilibria. To address this limitation, we developed a generalized susceptible-infectious-susceptible compartmental model capable of accurately incorporating the duration of infection distribution and describing both periodic and non-periodic disease trajectories. We characterized how our model’s parameters influence its behavior and applied the model to predict gonorrhea incidence in the US, using Akaike Information Criteria to inform on its merit relative to the traditional SIS model. The significance of our work lies in providing a novel susceptible-infected-susceptible model whose solutions can have closed-form expressions that may be periodic or non-periodic depending on the parameterization. Our work thus provides disease modelers with a straightforward way to investigate the potential periodic behavior of many diseases and thereby may aid ongoing efforts to prevent recurrent outbreaks.  more » « less
Award ID(s):
2052592
PAR ID:
10488381
Author(s) / Creator(s):
;
Publisher / Repository:
keai publishing
Date Published:
Journal Name:
Infectious Disease Modelling
Volume:
8
Issue:
4
ISSN:
2468-0427
Page Range / eLocation ID:
1190 to 1202
Subject(s) / Keyword(s):
infectious period duration of infection gonorrhea integral equations differential equations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Autonomous differential equation compartmental models hold broad utility in epidemiology and public health. However, these models typically cannot account explicitly for myriad factors that affect the trajectory of infectious diseases, with seasonal variations in host behavior and environmental conditions as noteworthy examples. Fortunately, using non-autonomous differential equation compartmental models can mitigate some of these deficiencies, as the inclusion of time-varying parameters can account for temporally varying factors. The inclusion of these temporally varying factors does come at a cost though, as many analysis techniques, such as the use of Poincaré maps and Floquet theory, on non-autonomous differential equation compartmental models are typically only tractable numerically. Here, we illustrate a rare$$n$$ n -strain generalized Susceptible-Infectious-Susceptible (SIS) compartmental model, with a general time-varying recovery rate, which features Floquet exponents that are algebraic expressions. We completely characterize the persistence and stability properties of our$$n$$ n -strain generalized SIS model for$$n\ge 1$$ n 1 . We also derive a closed-form solution in terms of elementary functions for the single-strain SIS model, which is capable of incorporating almost any infectious period distribution. Finally, to demonstrate the applicability of our work, we apply it to recent syphilis incidence data from the United States, utilizing Akaike Information Criteria and Forecast Skill Scores to inform on the model’s goodness of fit relative to complexity and the model’s capacity to predict future trends. 
    more » « less
  2. In the past few years, approaches such as physics informed neural networks (PINNs) have been applied to a variety of applications that can be modeled by linear and nonlinear ordinary and partial differential equations. Specifically, this work builds on the application of PINNs to a SIRD (susceptible, infectious, recovered, and dead) compartmental model and enhances it to build new mathematicalmodels that incorporate transportation between populations and their impact on the dynamics of infectious diseases. Our work employs neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters. We show how these approaches are capable of predicting the behavior of a disease described by governing differential equations that include parameters and variables associated with the movement of the population between neighboring cities. We show that our model validates real data and also how such PINNs based methodspredict optimal parameters for given datasets. 
    more » « less
  3. Deterministic compartmental models for infectious diseases give the mean behaviour of stochastic agent-based models. These models work well for counterfactual studies in which a fully mixed large-scale population is relevant. However, with finite size populations, chance variations may lead to significant departures from the mean. In real-life applications, finite size effects arise from the variance of individual realizations of an epidemic course about its fluid limit. In this article, we consider the classical stochastic Susceptible-Infected-Recovered (SIR) model, and derive a martingale formulation consisting of a deterministic and a stochastic component. The deterministic part coincides with the classical deterministic SIR model and we provide an upper bound for the stochastic part. Through analysis of the stochastic component depending on varying population size, we provide a theoretical explanation of finite size effects. Our theory is supported by quantitative and direct numerical simulations of theoretical infinitesimal variance. Case studies of coronavirus disease 2019 (COVID-19) transmission in smaller populations illustrate that the theory provides an envelope of possible outcomes that includes the field data. 
    more » « less
  4. Abstract We propose and analyze a family of epidemiological models that extend the classic Susceptible-Infectious-Recovered/Removed (SIR)-like framework to account for dynamic heterogeneity in infection risk. The family of models takes the form of a system of reaction–diffusion equations given populations structured by heterogeneous susceptibility to infection. These models describe the evolution of population-level macroscopic quantities S ,  I ,  R as in the classical case coupled with a microscopic variable f , giving the distribution of individual behavior in terms of exposure to contagion in the population of susceptibles. The reaction terms represent the impact of sculpting the distribution of susceptibles by the infection process. The diffusion and drift terms that appear in a Fokker–Planck type equation represent the impact of behavior change both during and in the absence of an epidemic. We first study the mathematical foundations of this system of reaction–diffusion equations and prove a number of its properties. In particular, we show that the system will converge back to the unique equilibrium distribution after an epidemic outbreak. We then derive a simpler system by seeking self-similar solutions to the reaction–diffusion equations in the case of Gaussian profiles. Notably, these self-similar solutions lead to a system of ordinary differential equations including classic SIR-like compartments and a new feature: the average risk level in the remaining susceptible population. We show that the simplified system exhibits a rich dynamical structure during epidemics, including plateaus, shoulders, rebounds and oscillations. Finally, we offer perspectives and caveats on ways that this family of models can help interpret the non-canonical dynamics of emerging infectious diseases, including COVID-19. 
    more » « less
  5. Sexually transmitted diseases (STDs) are detrimental to the health and economic well-being of society. Consequently, predicting outbreaks and identifying effective disease interventions through epidemiological tools, such as compartmental models, is of the utmost importance. Unfortunately, the ordinary differential equation compartmental models attributed to the work of Kermack and McKendrick require a duration of infection that follows the exponential or Erlang distribution, despite the biological invalidity of such assumptions. As these assumptions negatively impact the quality of predictions, alternative approaches are required that capture how the variability in the duration of infection affects the trajectory of disease and the evaluation of disease interventions. So, we apply a new family of ordinary differential equation compartmental models based on the quantity person-days of infection to predict the trajectory of disease. Importantly, this new family of models features non-exponential and non-Erlang duration of infection distributions without requiring more complex integral and integrodifferential equation compartmental model formulations. As proof of concept, we calibrate our model to recent trends of chlamydia incidence in the U.S. and utilize a novel duration of infection distribution that features periodic hazard rates. We then evaluate how increasing STD screening rates alter predictions of incidence and disability adjusted life-years over a five-year horizon. Our findings illustrate that our family of compartmental models provides a better fit to chlamydia incidence trends than traditional compartmental models, based on Akaike information criterion. They also show new asymptomatic and symptomatic infections of chlamydia peak over drastically different time frames and that increasing the annual STD screening rates from 35% to 40%-70% would annually avert 6.1-40.3 incidence while saving 1.68-11.14 disability adjusted life-years per 1000 people. This suggests increasing the STD screening rate in the U.S. would greatly aid in ongoing public health efforts to curtail the rising trends in preventable STDs. 
    more » « less