skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Curing “GFP-itis” in Bacteria with Base Editors: Development of a Genome Editing Science Program Implemented with High School Biology Students
The flexibility and precision of CRISPR-Cas9 and related technologies have made these genome editing tools increasingly popular in agriculture, medicine, and basic science research for the past decade. Genome editing will continue to be relevant and utilized across diverse scientific fields in the future. Given this, students should be introduced to genome editing technologies and encouraged to consider their ethical implications early on in precollege biology curricula. Furthermore, instruction on this topic presents an opportunity to create partnerships between researchers and educators at the K-12 levels that can strengthen student engagement in science, technology, engineering, and mathematics. To this end, we present a 3-day student-centered learning program to introduce high school students to genome editing technologies through a hands-on base editing experiment in Escherichia coli, accompanied by a relevant background lecture and facilitated ethics discussion. This unique partnership aims to educate students and provides a framework for research institutions to implement genome editing outreach programs at local high schools. We have included all requisite materials, including lecture slides, worksheets, experimental protocols, and suggestions on active learning strategies for others to reproduce our program with their local communities.  more » « less
Award ID(s):
2048207
PAR ID:
10488454
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Mary Ann Liebert, Inc.
Date Published:
Journal Name:
The CRISPR Journal
Volume:
6
Issue:
3
ISSN:
2573-1599
Page Range / eLocation ID:
186 to 195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Colorado SCience and ENgineering Inquiry Collaborative for Rural K12 Outreach (SCENIC Colorado) is investigating an educational infrastructure for supporting engineering and science learning and identity formation as part of an outreach program with rural Colorado high schools. This research takes the rural context into careful consideration. While rural places are often described by their deficits (Reagan et al., 2019), this study operationalizes place-based pedagogy and the theoretical framework of rural cultural wealth (Crumb et al., 2022) to conceptualize and engage rural places from an asset-based perspective. We believe rural places can be rich environments for engineering and science learning. Therefore, we aspire to support high school students with the development of soil or air quality inquiry projects that are relevant to their local rural communities. Situated within a larger study on the SCENIC outreach program and its impact on student participation in and identification with engineering and science, this paper focuses more narrowly on place-based engineering with students in the rural context. The research questions are: What aspects of the outreach program's educational infrastructure enable place-based science and engineering inquiry? What aspects of place—their locality's history and culture—inform rural students' selection of environmental monitoring topics to investigate? How does conducting place-based environmental monitoring projects contribute to rural students’ engineering and science identity development? 
    more » « less
  2. null (Ed.)
    Student research in STEM education is an important learning component for both undergraduate and graduate students. It is not sufficient for students to learn passively in lecture-based classrooms without engaging and immersing themselves in the educational process through real-world research learning. Experiential learning for STEM students can involve conducting research, alongside and through the guidance of their professors, early in a student’s undergraduate or graduate program. The authors consider such experiences to be the hallmark of a high-quality STEM education and something every student, undergraduate and graduate, should have during the course of their programs. The purpose of this case study is to document the faculty authors’ experiences in student-faculty research and provide guidance and recommendations for best practices based upon the authors’ experience, data, and literature findings. Moreover, the study presents the experience of the faculty authors’ international student researchers in STEM with focus on two student researchers, one undergraduate and one graduate, who are international STEM. The students served as co-authors on this project. Findings from this case study indicate that students were highly engaged in the research process and found these skills valuable preparation for further study and career. Moreover, the students expressed enthusiasm and engagement for the research process. 
    more » « less
  3. The Geoscience Education Targeting Underrepresented Populations program is a National Science Foundation funded project designed to assess the effectiveness of a multifaceted approach to increase recruitment and retention in Earth & Environmental Science (EES) majors at Weber State University (WSU) in Ogden, Utah. This program integrates a combination of early outreach to high schools, concurrent-enrollment courses, a summer bridge program, structured early undergraduate research experiences, community engaged learning, and multiple pedagogies to support a diverse student population. The focus of this presentation will be on the place-based educational approach to teaching an Earth science summer bridge program and a first-year summer research experience. These programs overlap in both time and location allowing incoming students to have peer-to-peer interactions with current EES majors. The summer bridge program runs for two weeks and provides students with an introduction to the WSU campus, available student services, initial advising, and an early collaborative research experience focused on local natural hazards and the Great Salt Lake basin water resources. Students collect water samples from Great Salt Lake, local streams, and a groundwater well field on WSU’s campus. Students then analyze major element chemistry of those samples with the help of faculty and students in the EES department using lab facilities at WSU. The summer research program is a four-week summer program for freshmen and sophomores who have declared an EES major. Students conduct in-depth field and lab research project on the Great Salt Lake ecosystem, using real-time geochemical data collected from field observatories on Antelope Island State Park. Students work as a team with a faculty lead and senior peer teaching assistants to address a research question by analyzing field station data as well as collecting and analyzing environmental chemistry and microbiology samples from the lake, including alkalinity, inorganic and organic carbon, major ions, cell counts, and photosynthetic efficiency. The summer research students also act as peer mentors for students in the Summer Bridge. All students present their research finding to friends and family at a celebratory event on the last day of both programs. We will present on the successes and challenges of the program to date and our plans to assess various components and their overall impact on student recruitment and retention in our department. 
    more » « less
  4. Bioethics is an important aspect of understanding the relationship between science and society, but studies have not yet examined undergraduate student experiences and comfort in bioethics courses. In this study, we investigated undergraduate bioethics students’ support of and comfort when learning three controversial bioethics topics: gene editing, abortion, and physician-assisted suicide (PAS). Furthermore, student identity has been shown to influence how students perceive and learn about controversial topics at the intersection of science and society. So, we explored how students’ religious affiliation, gender, or political affiliation was associated with their support of and comfort when learning about gene editing, abortion, and PAS. We found that most students entered bioethics with moderated viewpoints on controversial topics but that there were differences in students’ tendency to support each topic based on their gender, religion, and political affiliation. We also saw differences in student comfort levels based on identity: women reported lower comfort than men when learning about gene editing, religious students were less comfortable than nonreligious students when learning about abortion and PAS, and nonliberal students were less comfortable than liberal students when learning about abortion. Students cited that the controversy surrounding these topics and a personal hesitancy to discuss them caused discomfort. These findings indicate that identity impacts comfort and support in a way similar to that previously shown in the public. Thus, it may be important for instructors to consider student identity when teaching bioethics topics to maximize student comfort, ultimately encouraging thoughtful consideration and engagement with these topics. 
    more » « less
  5. Student motivation within a STEM course is dependent on their perceived relevance and utility of the topics learned. This paper presents an Informative Utility Value Intervention (IUVI) designed to promote perceptions of utility. The IUVI was designed as a series of assignments for general chemistry students in large lecture courses, but the method can be adapted to other science disciplines. The intervention begins by establishing a baseline of students’ utility-value of chemistry then scaffolds new connections to their field of interest. The scaffold includes directing students to published articles demonstrating real-world connections between topics they are learning and their career interests. Student responses indicate they were able to make connections between the topic and their career interests and they perceived the articles as relevant to their career interests. 
    more » « less