skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vibration Signal-Assisted Endpoint Detection for Long-Stretch, Ultraprecision Polishing Processes
Abstract The research reported in this article is concerned with the question of detecting and subsequently determining the endpoint in a long-stretch, ultraprecision surface polishing process. While polishing endpoint detection has attracted much attention for several decades in the chemical-mechanical planarization of semiconductor wafer polishing processes, the uniqueness of the surface polishing process under our investigation calls for novel solutions. To tackle the research challenges, we develop both an offline model and an online detection method. The offline model is a functional regression that relates the vibration signals to the surface roughness, whereas the online procedure is a change-point detection method that detects the energy turning points in the vibration signals. Our study reveals a number of insights. The offline functional regression model shows clearly that the polishing process progresses in three states, including a saturation phase, over which the polishing action could be substantially shortened. The online detection method signals in real-time when to break a polishing cycle and to institute a follow-up inspection, rather than letting the machine engage in an overpolishing cycle for too long. When implemented properly, both sets of insights and the corresponding methods could lead to substantial savings in polishing time and energy and significantly improve the throughput of such polishing processes without inadvertently affecting the quality of the final polish.  more » « less
Award ID(s):
1849085
PAR ID:
10488815
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
145
Issue:
6
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polishing of additively manufactured products is a multi-stage process, and a different combination of polishing pad and process parameters is employed at each stage. Pad change decisions and endpoint determination currently rely on practitioners’ experience and subjective visual inspection of surface quality. An automated and objective decision process is more desired for delivering consistency and reducing variability. Toward that objective, a model-guided decision-making scheme is developed in this article for the polishing process of a titanium alloy workpiece. The model used is a series of Gaussian process models, each established for a polishing stage at which surface data are gathered. The series of Gaussian process models appear capable of capturing surface changes and variation over the polishing process, resulting in a decision protocol informed by the correlation characteristics over the sample surface. It is found that low correlations reveal the existence of extreme roughness that may be deemed surface defects. Making judicious use of the change pattern in surface correlation provides insights enabling timely actions. Physical polishing of titanium alloy samples and a simulation of this process are used together to demonstrate the merit of the proposed method. 
    more » « less
  2. Early fault detection in rolling element bearings is pivotal for the effective predictive maintenance of rotating machinery. Deep Learning (DL) methods have been widely studied for vibration-based bearing fault diagnostics largely because of their capability to automatically extract fault-related features from raw or processed vibration data. Although most DL models in the current literature can provide fairly accurate classification outputs, the typical diagnostic procedure is performed in an offline environment utilizing powerful computers. This centralized approach can lead to unacceptable delays in safety-critical applications and can prohibit cost-sensitive wireless data collection. Meanwhile, very few studies have reported on deploying DL models on microprocessor-based Industrial Internet of Things (IIoT) devices, where edge computing can give users a real-time evaluation of bearing health without requiring expensive computational infrastructure. This paper demonstrates an IIoT deployment of a physics-informed DL model inside a commercially available wireless vibration sensor for online health classification. The diagnostic model here is developed and trained offline, and the trained model is then deployed inside the embedded system for online prediction. We demonstrate the model’s online diagnostic performance by imitating bearing vibration signals on a vibration shaker and by performing edge computing on the embedded system mounted on the shaker. 
    more » « less
  3. In additive manufacturing (AM), the surface roughness of the deposited parts remains significantly higher than the admissible range for most applications. Additionally, the surface topography of AM parts exhibits waviness profiles between tracks and layers. Therefore, post-processing is indispensable to improve surface quality. Laser-aided machining and polishing can be effective surface improvement processes that can be used due to their availability as the primary energy sources in many metal AM processes. While the initial roughness and waviness of the surface of most AM parts are very high, to achieve dimensional accuracy and minimize roughness, a high input energy density is required during machining and polishing processes although such high energy density may induce process defects and escalate the phenomenon of wavelength asperities. In this paper, we propose a systematic approach to eliminate waviness and reduce surface roughness with the combination of laser-aided machining, macro-polishing, and micro-polishing processes. While machining reduces the initial waviness, low energy density during polishing can minimize this further. The average roughness (Ra=1.11μm) achieved in this study with optimized process parameters for both machining and polishing demonstrates a greater than 97% reduction in roughness when compared to the as-built part. 
    more » « less
  4. During machining, kinetic energy is imparted to a workpiece to remove material. The integrity of the machined surface, which depends on the energy transfer, affects the quality and performance of the product, therefore needs to be quantified. Prior studies have indicated the potential of using machining power, or the power consumption at the tool-chip interface, as a process signature for predicting machined surface integrity. However, direct measurement of machining power is constrained by the availability of special equipment and the associated cost. To address this gap, this paper presents a machine learning-based method for machining power prediction through multi-sensor fusion and sequence-to-sequence translation from acoustic and vibration signals, which represent portions of the in-situ kinetic energy dissipation, to the machining power signal as a process signature. Specifically, a neural network architecture is developed to separately translate the acoustic and vibration signals to corresponding machining power signals. The two predicted power signals are subsequently fused to arrive at a unified power signal prediction. To check for spurious decision logic, the sensor fusion model is interpreted using integrated gradients to reveal temporal regions of the input data which have the most influence on the machining power prediction accuracy of the fusion model. Systematic cutting experiments performed on a lathe using 1018 steel have shown that the developed sensor fusion method for process signature prediction can successfully map machine acoustics to power consumption with 5.6% error, tool vibration to power consumption with 8.2% error, and acoustics and vibration, jointly, to power with 2.5% error. Model parameter interpretation reveals that the vibration signal is more influential on the machining power prediction result than the acoustic signal, but that overall model accuracy is diminished if only the vibration signal is used. 
    more » « less
  5. This study examines the relationship between online communication by the Proud Boys and their offline activities. We use a supervised machine learning model to analyze a novel dataset of Proud Boys Telegram messages, merged with US Crisis Monitor data of violent and nonviolent events in which group members participated over a 31-month period. Our analysis finds that intensifying expressions of grievances online predict participation in offline violence, whereas motivational appeals to group pride, morale, or solidarity share a reciprocal relationship with participation in offline events. This suggests a potential online messaging–offline action cycle, in which (a) nonviolent offline protests predict an increasing proportion of motivational messaging and (b) increases in the frequency and proportion of motivational appeals online, in turn, predict subsequent violent offline activities. Our findings offer useful theoretical insights for understanding the relationship between online speech and offline behavior. 
    more » « less