skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A novel method for simultaneous triggering and in situ sensing of internal short circuit in lithium-ion cells
Here we report a novel and simple method for triggering internal short circuit (ISC) in Li-ion cells on demand and measuring critical ISC parameters in situ. The method works by inserting a pair of metal pads into a Li-ion cell and connecting the pads outside the cell through a switch and a current sensor. Different types of ISC that are common in field failures can be simulated by this method. ISC current and ISC resistance can be measured. The measurement further enables determination of local ISC heat generation rate. By attaching a micro temperature sensor between the metal pads, the ISC temperature can be also measured. The method was applied to both lab-made single-layer cells and commercially available multiple-layer cells in this work. The results generally verified previous modeling predictions about the effects of ISC types and ISC resistance on behaviors of Li-ion cells. It suggested that the proposed method can be used to validate models and enhance understanding of highly localized and transient behaviors of ISC. It was also demonstrated that the method has minimal effects on Li-ion cell performance and has good repeatability in triggering ISC.  more » « less
Award ID(s):
2240029
PAR ID:
10488874
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Royal Society of Chemistry
Date Published:
Journal Name:
Energy Advances
Volume:
2
Issue:
12
ISSN:
2753-1457
Page Range / eLocation ID:
2018 to 2028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the behavior of pressure increases in lithium-ion (Li-ion) cells is essential for prolonging the lifespan of Li-ion battery cells and minimizing the safety risks associated with cell aging. This work investigates the effects of C-rates and temperature on pressure behavior in commercial lithium cobalt oxide (LCO)/graphite pouch cells. The battery is volumetrically constrained, and the mechanical pressure response is measured using a force gauge as the battery is cycled. The effect of the C-rate (1C, 2C, and 3C) and ambient temperature (10 ◦C, 25 ◦C, and 40 ◦C) on the increase in battery pressure is investigated. By analyzing the change in the minimum, maximum, and pressure difference per cycle, we identify and discuss the effects of different factors (i.e., SEI layer damage, electrolyte decomposition, lithium plating) on the pressure behavior. Operating at high C-rates or low temperatures rapidly increases the residual pressure as the battery is cycled. The results suggest that lithium plating is predominantly responsible for battery expansion and pressure increase during the cycle aging of Li-ion cells rather than electrolyte decomposition. Electrochemical impedance spectroscopy (EIS) measurements can support our conclusions. Postmortem analysis of the aged cells was performed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) to confirm the occurrence of lithium plating and film growth on the anodes of the aged cells. This study demonstrates that pressure measurements can provide insights into the aging mechanisms of Li-ion batteries and can be used as a reliable predictor of battery degradation. 
    more » « less
  2. Understanding the behavior of pressure increases in lithium-ion (Li-ion) cells is essential for prolonging the lifespan of Li-ion battery cells and minimizing the safety risks associated with cell aging. This work investigates the effects of C-rates and temperature on pressure behavior in commercial lithium cobalt oxide (LCO)/graphite pouch cells. The battery is volumetrically constrained, and the mechanical pressure response is measured using a force gauge as the battery is cycled. The effect of the C-rate (1C, 2C, and 3C) and ambient temperature (10 °C, 25 °C, and 40 °C) on the increase in battery pressure is investigated. By analyzing the change in the minimum, maximum, and pressure difference per cycle, we identify and discuss the effects of different factors (i.e., SEI layer damage, electrolyte decomposition, lithium plating) on the pressure behavior. Operating at high C-rates or low temperatures rapidly increases the residual pressure as the battery is cycled. The results suggest that lithium plating is predominantly responsible for battery expansion and pressure increase during the cycle aging of Li-ion cells rather than electrolyte decomposition. Electrochemical impedance spectroscopy (EIS) measurements can support our conclusions. Postmortem analysis of the aged cells was performed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) to confirm the occurrence of lithium plating and film growth on the anodes of the aged cells. This study demonstrates that pressure measurements can provide insights into the aging mechanisms of Li-ion batteries and can be used as a reliable predictor of battery degradation. 
    more » « less
  3. null (Ed.)
    Composite polymer electrolytes (CPEs) for solid-state Li metal batteries (SSLBs) still suffer from gradually increased interface resistance and unconstrained Li dendrite growth. Herein, we addressed the challenges by designing a LiF-rich inorganic solid-electrolyte interphase (SEI) through introducing a fluoride-salt concentrated interlayer on CPE film. The rigid and flexible CPE helps accommodate the volume change of electrodes, while the polymeric high-concentrated electrolyte (PHCE) surface-layer regulates Li-ion flux due to the formation of a stable LiF-rich SEI via anion reduction. The designed CPE-PHCE presents enhanced ionic conductivity and high oxidation stability of > 5.0V (vs. Li/Li+). What’s more, it dramatically reduces the interfacial resistance and achieves a high critical current density of 4.5 mA cm-2 for dendrite-free cycling. The SSLBs, fabricated with thin CPE-PHCE membrane (< 100 μm) and Co-free LiNiO2 cathode, exhibit exceptional electrochemical performance and long cycling stability. This approach of SEI design can also be applied to other types of batteries. 
    more » « less
  4. Phase change memory devices become practical for non-volatile storage at small dimensions due to reduced power and predictable device operation. In larger scale cells, devices can be locally melted due to filament formation and liquid filaments can be retained in parts of the cell for a long time even if most or all of the cells are initially amorphized during long fall-times. The complex amorphization and crystallization dynamics make these large cells more unpredictable and enable their applications as physically unclonable functions (PUF) [1,2]. Computational analysis of the complex amorphization-crystallization dynamics in phase change memory devices with large geometries is important to understand the evolution of phase distributions and temperature profiles during programming of these devices. In this work, we conduct electrothermal finite element simulations of reset operation on a large Ge2Sb2Te5 (GST) cell using the framework we have developed in COMSOL multiphysics [3]-[9] and analyze the complex dynamics of amorphization, nucleation and growth during electrical stress. We input voltage waveforms measured from electrical characterization of on-oxide GST line cells with bottom metal contact pads and Si3N4 capping. A 2D polycrystalline model of the experimentally measured cells (~360 nm wide, ~400 nm long and ~50 nm thick) is constructed in the simulations. Access devices are modeled using the spice models. The simulations capture some of the interplay between changes in the device resistance due to heating and phase changes and current fluctuations. 
    more » « less
  5. Li-ion battery internal short circuits are a major safety issue for electric vehicles, and can lead to serious consequences such as battery thermal runaway. An internal short can be caused by mechanical abuse, high temperature, overcharging, and lithium plating. The low impedance or hard internal short circuit is the most dangerous kind. The high internal current flow can lead to battery temperature increase, thermal runaway, and even explosion in a few seconds. Algorithms that can quickly detect such serious events with a high confidence level and which are robust to sensor noise are needed to ensure passenger safety. False positives are also undesirable as many thermal runaway mitigation techniques, such as activating pyrotechnic safety switches, would disable the vehicle. Conventional methods of battery internal short detection, including voltage and surface temperature based algorithms, work well for a single cell. However, these methods are difficult to apply in large scale battery packs with many parallel cells. In this study, we propose a new internal short detection method by using cell swelling information during the early stages of a battery heating caused by an internal short circuit. By measuring cell expansion force, higher confidence level detection can be achieved for an internal short circuit in an electric vehicle scale battery pack. 
    more » « less