skip to main content


This content will become publicly available on July 10, 2024

Title: Theoretical bounds on the network community profile from low-rank semi-definite programming
We study a new connection between a technical measure called $\mu$-conductance that arises in the study of Markov chains for sampling convex bodies and the network community profile that characterizes size-resolved properties of clusters and communities in social and information networks. The idea of $\mu$-conductance is similar to the traditional graph conductance, but disregards sets with small volume. We derive a sequence of optimization problems including a low-rank semi-definite program from which we can derive a lower bound on the optimal $\mu$-conductance value. These ideas give the first theoretically sound bound on the behavior of the network community profile for a wide range of cluster sizes. The algorithm scales up to graphs with hundreds of thousands of nodes and we demonstrate how our framework validates the predicted structures of real-world graphs.  more » « less
Award ID(s):
1839317
NSF-PAR ID:
10488923
Author(s) / Creator(s):
Publisher / Repository:
ICML
Date Published:
Journal Name:
International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a notion called entropic independence that is an entropic analog of spectral notions of high-dimensional expansion. Informally, entropic independence of a background distribution $\mu$ on $k$-sized subsets of a ground set of elements says that for any (possibly randomly chosen) set $S$, the relative entropy of a single element of $S$ drawn uniformly at random carries at most $O(1/k)$ fraction of the relative entropy of $S$. Entropic independence is the analog of the notion of spectral independence, if one replaces variance by entropy. We use entropic independence to derive tight mixing time bounds, overcoming the lossy nature of spectral analysis of Markov chains on exponential-sized state spaces. In our main technical result, we show a general way of deriving entropy contraction, a.k.a. modified log-Sobolev inequalities, for down-up random walks from spectral notions. We show that spectral independence of a distribution under arbitrary external fields automatically implies entropic independence. We furthermore extend our theory to the case where spectral independence does not hold under arbitrary external fields. To do this, we introduce a framework for obtaining tight mixing time bounds for Markov chains based on what we call restricted modified log-Sobolev inequalities, which guarantee entropy contraction not for all distributions, but for those in a sufficiently large neighborhood of the stationary distribution. To derive our results, we relate entropic independence to properties of polynomials: $\mu$ is entropically independent exactly when a transformed version of the generating polynomial of $\mu$ is upper bounded by its linear tangent; this property is implied by concavity of the said transformation, which was shown by prior work to be locally equivalent to spectral independence. We apply our results to obtain (1) tight modified log-Sobolev inequalities and mixing times for multi-step down-up walks on fractionally log-concave distributions, (2) the tight mixing time of $O(n\log n)$ for Glauber dynamics on Ising models whose interaction matrix has eigenspectrum lying within an interval of length smaller than $1$, improving upon the prior quadratic dependence on $n$, and (3) nearly-linear time $\widetilde O_{\delta}(n)$ samplers for the hardcore and Ising models on $n$-node graphs that have $\delta$-relative gap to the tree-uniqueness threshold. In the last application, our bound on the running time does not depend on the maximum degree $\Delta$ of the graph, and is therefore optimal even for high-degree graphs, and in fact, is sublinear in the size of the graph for high-degree graphs. 
    more » « less
  2. We study the \emph{offline reinforcement learning} (offline RL) problem, where the goal is to learn a reward-maximizing policy in an unknown \emph{Markov Decision Process} (MDP) using the data coming from a policy $\mu$. In particular, we consider the sample complexity problems of offline RL for the finite horizon MDPs. Prior works derive the information-theoretical lower bounds based on different data-coverage assumptions and their upper bounds are expressed by the covering coefficients which lack the explicit characterization of system quantities. In this work, we analyze the \emph{Adaptive Pessimistic Value Iteration} (APVI) algorithm and derive the suboptimality upper bound that nearly matches $ O\left(\sum_{h=1}^H\sum_{s_h,a_h}d^{\pi^\star}_h(s_h,a_h)\sqrt{\frac{\mathrm{Var}_{P_{s_h,a_h}}{(V^\star_{h+1}+r_h)}}{d^\mu_h(s_h,a_h)}}\sqrt{\frac{1}{n}}\right). $ We also prove an information-theoretical lower bound to show this quantity is required under the weak assumption that $d^\mu_h(s_h,a_h)>0$ if $d^{\pi^\star}_h(s_h,a_h)>0$. Here $\pi^\star$ is a optimal policy, $\mu$ is the behavior policy and $d(s_h,a_h)$ is the marginal state-action probability. We call this adaptive bound the \emph{intrinsic offline reinforcement learning bound} since it directly implies all the existing optimal results: minimax rate under uniform data-coverage assumption, horizon-free setting, single policy concentrability, and the tight problem-dependent results. Later, we extend the result to the \emph{assumption-free} regime (where we make no assumption on $ \mu$) and obtain the assumption-free intrinsic bound. Due to its generic form, we believe the intrinsic bound could help illuminate what makes a specific problem hard and reveal the fundamental challenges in offline RL. 
    more » « less
  3. We study the performance of Markov chains for the q-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis and, in fact, even analysing the properties of the Potts distribution has remained elusive. It is conjectured that the performance of Markov chains is dictated by metastability phenomena, i.e., the presence of "phases" (clusters) in the sample space where Markov chains with local update rules, such as the Glauber dynamics, are bound to take exponential time to escape, and therefore cause slow mixing. The phases that are believed to drive these metastability phenomena in the case of the Potts model emerge as local, rather than global, maxima of the so-called Bethe functional, and previous approaches of analysing these phases based on optimisation arguments fall short of the task. Our first contribution is to detail the emergence of the metastable phases for the q-state Potts model on the d-regular random graph for all integers q,d ≥ 3, and establish that for an interval of temperatures, delineated by the uniqueness and a broadcasting threshold on the d-regular tree, the two phases coexist. The proofs are based on a conceptual connection between spatial properties and the structure of the Potts distribution on the random regular graph, rather than complicated moment calculations. This significantly refines earlier results by Helmuth, Jenssen, and Perkins who had established phase coexistence for a small interval around the so-called ordered-disordered threshold (via different arguments) that applied for large q and d ≥ 5. Based on our new structural understanding of the model, we obtain various algorithmic consequences. We first complement recent fast mixing results for Glauber dynamics by Blanca and Gheissari below the uniqueness threshold, showing an exponential lower bound on the mixing time above the uniqueness threshold. Then, we obtain tight results even for the non-local and more elaborate Swendsen-Wang chain, where we establish slow mixing/metastability for the whole interval of temperatures where the chain is conjectured to mix slowly on the random regular graph. The key is to bound the conductance of the chains using a random graph "planting" argument combined with delicate bounds on random-graph percolation. 
    more » « less
  4. Abstract

    We study the performance of Markov chains for theq-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis and, in fact, even analysing the properties of the Potts distribution has remained elusive. It is conjectured that the performance of Markov chains is dictated by metastability phenomena, i.e., the presence of “phases” (clusters) in the sample space where Markov chains with local update rules, such as the Glauber dynamics, are bound to take exponential time to escape, and therefore cause slow mixing. The phases that are believed to drive these metastability phenomena in the case of the Potts model emerge as local, rather than global, maxima of the so-called Bethe functional, and previous approaches of analysing these phases based on optimisation arguments fall short of the task. Our first contribution is to detail the emergence of the two relevant phases for theq-state Potts model on thed-regular random graph for all integers$$q,d\ge 3$$q,d3, and establish that for an interval of temperatures, delineated by the uniqueness and a broadcasting threshold on thed-regular tree, the two phases coexist (as possible metastable states). The proofs are based on a conceptual connection between spatial properties and the structure of the Potts distribution on the random regular graph, rather than complicated moment calculations. This significantly refines earlier results by Helmuth, Jenssen, and Perkins who had established phase coexistence for a small interval around the so-called ordered-disordered threshold (via different arguments) that applied for largeqand$$d\ge 5$$d5. Based on our new structural understanding of the model, our second contribution is to obtain metastability results for two classical Markov chains for the Potts model. We first complement recent fast mixing results for Glauber dynamics by Blanca and Gheissari below the uniqueness threshold, by showing an exponential lower bound on the mixing time above the uniqueness threshold. Then, we obtain tight results even for the non-local and more elaborate Swendsen–Wang chain, where we establish slow mixing/metastability for the whole interval of temperatures where the chain is conjectured to mix slowly on the random regular graph. The key is to bound the conductance of the chains using a random graph “planting” argument combined with delicate bounds on random-graph percolation.

     
    more » « less
  5. Cheeger's inequality shows that any undirected graph G with minimum normalized Laplacian eigenvalue lambda_G has a cut with conductance at most O(sqrt{lambda_G}). Qualitatively, Cheeger's inequality says that if the mixing time of a graph is high, there is a cut that certifies this. However, this relationship is not tight, as some graphs (like cycles) do not have cuts with conductance o(sqrt{lambda_G}). To better approximate the mixing time of a graph, we consider a more general object. Specifically, instead of bounding the mixing time with cuts, we bound it with cuts in graphs obtained by Schur complementing out vertices from the graph G. Combinatorially, these Schur complements describe random walks in G restricted to a subset of its vertices. As a result, all Schur complement cuts have conductance at least Omega(lambda_G). We show that unlike with cuts, this inequality is tight up to a constant factor. Specifically, there is a Schur complement cut with conductance at most O(lambda_G). 
    more » « less