skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Multi-Rate Planning and Control of Uncertain Nonlinear Systems: Model Predictive Control and Control Lyapunov Functions
Award ID(s):
1932091 1924526 1923239
PAR ID:
10489345
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-6761-2
Page Range / eLocation ID:
3732 to 3739
Format(s):
Medium: X
Location:
Cancun, Mexico
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Safety is a critical component in today's autonomous and robotic systems. Many modern controllers endowed with notions of guaranteed safety properties rely on accurate mathematical models of these nonlinear dynamical systems. However, model uncertainty is always a persistent challenge weakening theoretical guarantees and compromising safety. For safety-critical systems, this is an even bigger challenge. Typically, safety is ensured by constraining the system states within a safe constraint set defined a priori by relying on the model of the system. A popular approach is to use Control Barrier Functions (CBFs) that encode safety using a smooth function. However, CBFs fail in the presence of model uncertainties. Moreover, an inaccurate model can either lead to incorrect notions of safety or worse, incur system critical failures. Addressing these drawbacks, we present a novel safety formulation that leverages properties of CBFs and positive definite kernels to design Gaussian CBFs. The underlying kernels are updated online by learning the unmodeled dynamics using Gaussian Processes (GPs). While CBFs guarantee forward invariance, the hyperparameters estimated using GPs update the kernel online and thereby adjust the relative notion of safety. We demonstrate our proposed technique on a safety-critical quadrotor on SO(3) in the presence of model uncertainty in simulation. With the kernel update performed online, safety is preserved for the system. 
    more » « less
  2. Construction robots have drawn increased attention as a potential means of improving construction safety and productivity. However, it is still challenging to ensure safe human-robot collaboration on dynamic and unstructured construction workspaces. On construction sites, multiple entities dynamically collaborate with each other and the situational context between them evolves continually. Construction robots must therefore be equipped to visually understand the scene’s contexts (i.e., semantic relations to surrounding entities), thereby safely collaborating with humans, as a human vision system does. Toward this end, this study builds a unique deep neural network architecture and develops a construction-specialized model by experimenting multiple fine-tuning scenarios. Also, this study evaluates its performance on real construction operations data in order to examine its potential toward real-world applications. The results showed the promising performance of the tuned model: the recall@5 on training and validation dataset reached 92% and 67%, respectively. The proposed method, which supports construction co-robots with the holistic scene understanding, is expected to contribute to promoting safer human-robot collaboration in construction. 
    more » « less
  3. We introduce a Xilinx RF System-on-Chip (RFSoC)-based qubit controller (called the Quantum Instrumentation Control Kit, or QICK for short), which supports the direct synthesis of control pulses with carrier frequencies of up to 6 GHz. The QICK can control multiple qubits or other quantum devices. The QICK consists of a digital board hosting an RFSoC field-programmable gate array, custom firmware, and software and an optional companion custom-designed analog front-end board. We characterize the analog performance of the system as well as its digital latency, important for quantum error correction and feedback protocols. We benchmark the controller by performing standard characterizations of a transmon qubit. We achieve an average gate fidelity of [Formula: see text]. All of the schematics, firmware, and software are open-source. 
    more » « less