Abstract The infection of cells by multiple copies of a given virus can impact viral evolution in a variety of ways, yet some of the most basic evolutionary dynamics remain underexplored. Using computational models, we investigate how infection multiplicity affects the fixation probability of mutants, the rate of mutant generation, and the timing of mutant invasion. An important insight from these models is that for neutral and disadvantageous phenotypes, rare mutants initially enjoy a fitness advantage in the presence of multiple infection of cells. This arises because multiple infection allows the rare mutant to enter more target cells and to spread faster, while it does not accelerate the spread of the resident wild-type virus. The rare mutant population can increase by entry into both uninfected and wild-type-infected cells, while the established wild-type population can initially only grow through entry into uninfected cells. Following this initial advantageous phase, the dynamics are governed by drift or negative selection, respectively, and a higher multiplicity reduces the chances that mutants fix in the population. Hence, while increased infection multiplicity promotes the presence of neutral and disadvantageous mutants in the short-term, it makes it less likely in the longer term. We show how these theoretical insights can be useful for the interpretation of experimental data on virus evolution at low and high multiplicities. The dynamics explored here provide a basis for the investigation of more complex viral evolutionary processes, including recombination, reassortment, as well as complementary/inhibitory interactions.
more »
« less
Evolutionary rescue via niche construction: Infrequent construction can prevent post-invasion extinction
A population experiencing habitat loss can avoid extinction by undergoing genetic adaptation—a process known as evolutionary rescue. Here we analytically approximate the probability of evolutionary rescue via a niche-constructing mutation that allows carriers to convert a novel, unfavorable reproductive habitat to a favorable state at a cost to their fecundity. We analyze competition between mutants and non-niche-constructing wild types, who ultimately require the constructed habitats to reproduce. We find that over-exploitation of the constructed habitats by wild types can generate damped oscillations in population size shortly after mutant invasion, thereby decreasing the probability of rescue. Such post-invasion extinction is less probable when construction is infrequent, habitat loss is common, the reproductive environment is large, or the population’s carrying capacity is small. Under these conditions, wild types are less likely to encounter the constructed habitats and, consequently, mutants are more likely to fix. These results suggest that, without a mechanism that deters wild type inheritance of the constructed habitats, a population undergoing rescue via niche construction may remain prone to short-timescale extinction despite successful mutant invasion.
more »
« less
- Award ID(s):
- 2147101
- PAR ID:
- 10489599
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Theoretical Population Biology
- Volume:
- 153
- Issue:
- C
- ISSN:
- 0040-5809
- Page Range / eLocation ID:
- 37 to 49
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Following severe environmental change that reduces mean population fitness below replacement, populations must adapt to avoid eventual extinction, a process called evolutionary rescue. Models of evolutionary rescue demonstrate that initial size, genetic variation and degree of maladaptation influence population fates. However, many models feature populations that grow without negative density dependence or with constant genetic diversity despite precipitous population decline, assumptions likely to be violated in conservation settings. We examined the simultaneous influences of density-dependent growth and erosion of genetic diversity on populations adapting to novel environmental change using stochastic, individual-based simulations. Density dependence decreased the probability of rescue and increased the probability of extinction, especially in large and initially well-adapted populations that previously have been predicted to be at low risk. Increased extinction occurred shortly following environmental change, as populations under density dependence experienced more rapid decline and reached smaller sizes. Populations that experienced evolutionary rescue lost genetic diversity through drift and adaptation, particularly under density dependence. Populations that declined to extinction entered an extinction vortex, where small size increased drift, loss of genetic diversity and the fixation of maladaptive alleles, hindered adaptation and kept populations at small densities where they were vulnerable to extinction via demographic stochasticity.more » « less
-
Abstract The literature about mutant invasion and fixation typically assumes populations to exist in isolation from their ecosystem. Yet, populations are part of ecological communities, and enemy-victim (e.g. predator-prey or pathogen-host) interactions are particularly common. We use spatially explicit, computational pathogen-host models (with wild-type and mutant hosts) to re-visit the established theory about mutant fixation, where the pathogen equally attacks both wild-type and mutant individuals. Mutant fitness is assumed to be unrelated to infection. We find that pathogen presence substantially weakens selection, increasing the fixation probability of disadvantageous mutants and decreasing it for advantageous mutants. The magnitude of the effect rises with the infection rate. This occurs because infection induces spatial structures, where mutant and wild-type individuals are mostly spatially separated. Thus, instead of mutant and wild-type individuals competing with each other, it is mutant and wild-type “patches” that compete, resulting in smaller fitness differences and weakened selection. This implies that the deleterious mutant burden in natural populations might be higher than expected from traditional theory.more » « less
-
PremiseThe success or failure of propagules in contrasting microhabitats may play a role in biological invasion. We tested for variation in demographic performance and phenotypic trait expression during invasion byAlliaria petiolatain different microhabitats. MethodsWe performed a reciprocal transplant experiment withAlliaria petiolatafrom edge, intermediate, and forest understory microhabitats to determine the roles of the environment and maternal source on traits, fecundity, population growth rates (λ), and selection. ResultsObservations ofin situpopulations show that edge populations had the highest density and reproductive output, and forest populations had the lowest. In experimental populations, population growth rates and reproductive output were highest in the edge, and the intermediate habitat had the lowest germination and juvenile survival. Traits exhibited phenotypic plasticity in response to microhabitat, but that plasticity was not adaptive. There were few effects of maternal source location on fitness components or traits. ConclusionsAlliaria petiolataappears to be viable, or nearly so, in all three microhabitat types, with edge populations likely providing seed to the other microhabitats. The intermediate microhabitat may filter propagules at the seed stage, but discrepancies betweenin situobservations and experimental transplants preclude clear conclusions about the role of each microhabitat in niche expansion. However, edge microhabitats show the highest seed output in both analyses, suggesting that managing edge habitats might reduce spread to the forest understory.more » « less
-
A major next step in hematopoietic stem cell (HSC) biology is to enhance our quantitative understanding of cellular and evolutionary dynamics involved in undisturbed hematopoiesis. Mathematical models have been and continue to be key in this respect, and are most powerful when parameterized experimentally and containing sufficient biological complexity. In this paper, we use data from label propagation experiments in mice to parameterize a mathematical model of hematopoiesis that includes homeostatic control mechanisms as well as clonal evolution. We find that nonlinear feedback control can drastically change the interpretation of kinetic estimates at homeostasis. This suggests that short-term HSC and multipotent progenitors can dynamically adjust to sustain themselves temporarily in the absence of long-term HSCs, even if they differentiate more often than they self-renew in undisturbed homeostasis. Additionally, the presence of feedback control in the model renders the system resilient against mutant invasion. Invasion barriers, however, can be overcome by a combination of age-related changes in stem cell differentiation and evolutionary niche construction dynamics based on a mutant-associated inflammatory environment. This helps us understand the evolution of e.g.,TET2orDNMT3Amutants, and how to potentially reduce mutant burden.more » « less
An official website of the United States government

