The transverse strength of fiber-reinforced composites is a matrix-dominated property whose accurate prediction iscrucial to designing and optimizing efficient, lightweight structures. State-of-the-art analytical models for compositestrength predictions do not account for fiber distribution, orientation, and curing-induced residual stress that greatlyinfluence damage initiation and failure propagation at the microscale. This work presents a novel methodology to develop an analytical solution for transverse composite strength based on computational micromechanics that enables the modeling of stress concentration due to representative volume elements (RVE) morphology and residual stress. Finiteelement simulations are used to model statistical samples of composite microstructures, generate stress-strain curves,and correlate statistical descriptors of the microscale to stress concentration factors to predict transverse strength as a function of fiber volume fraction. Tensile tests of thin plies validated this approach for carbon- and glass-reinforced composites showing promise to obtain a generalized analytical model for transverse composite strength prediction.
more »
« less
TRANSVERSE TENSILE STRENGTH PREDICTION OF THERMOSETTING COMPOSITES
The transverse tensile strength of composites is susceptible to size effects. Therefore, it is paramount to develop length-scale specific physical test procedures to validate computational models that estimate the transverse composite response using micromechanics. To this end, a computational process modeling and virtual mechanical testing framework are presented in this study to predict the transverse response of composite microstructures subjected to processing conditions. Informed by a comprehensive material dataset, the numerical model is shown to reliably predict the process-induced residual stress generation in composite microstructures and accurately evaluate its influence on their transverse strength prediction. A novel procedure to fabricate thin composite laminates from a single ply of carbon fibers and characterize their transverse tensile response is presented to validate the numerical model. The results show excellent agreement with the virtual test predictions. This study highlights the importance of length-scale specific testing to minimize the influence of size effect on the transverse composite strength.
more »
« less
- Award ID(s):
- 1826232
- PAR ID:
- 10489636
- Publisher / Repository:
- Destech Publications, Inc.
- Date Published:
- ISBN:
- 9781605956909
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The effect of residual stress build-up on the transverse properties of thermoset composites is studied through direct and inverse process modeling approaches. Progressive damage analysis is implemented to characterize composite stiffness and strength of cured composites microstructures. A size effect study is proposed to define the appropriate dimensions of Representative Volume Elements (RVEs). A comparison between periodic (PBCs) and flat (FBCs) boundary conditions during curing is performed on converged RVEs to establish computationally efficient methodologies. Transverse properties are analyzed as a function of the fiber packing through the nearest fiber distance statistical descriptor. A reasonable mechanical equivalence is achieved for RVEs consisting of 40 fibers. It has been found that process-induced residual stresses and fiber packing significantly contribute to the scatter in composites transverse strength. Variation of ±5% in average strength and 18% in standard deviation are observed with respect to ideally cured RVEs that neglect residual stresses. It is established that process modeling is needed to optimize the residual stress state and improve composite performance.more » « less
-
Materials that utilize heterogeneous microstructures to control macroscopic mechanical response are ubiquitous in nature. Yet, translating nature's lessons to create synthetic soft solids has remained challenging. This is largely due to the limited synthetic routes available for creating soft composites, particularly with submicron features, as well as uncertainty surrounding the role of such a microstructured secondary phase in determining material behavior. This work leverages recent advances in the development of photocrosslinkable thermogelling nanoemulsions to produce composite hydrogels with a secondary phase assembled at well controlled length scales ranging from tens of nm to tens of μm. Through analysis of the mechanical response of these fluid-filled composite hydrogels, it is found that the size scale of the secondary phase has a profound impact on the strength when at or above the elastofracture length. Moreover, this work shows that mechanical integrity of fluid–filled soft solids can be sensitive to the size scale of the secondary phase.more » « less
-
Aaleti, Sriram; Okumus, Pinar (Ed.)Researchers have explored the high energy absorption capacity and strength of UHPC materials to improve the seismic performance of structural components. Experimental results in the literature of reinforced UHPC members have indicated superior damage tolerance, higher strength and deformation capacities, and lower potential for collapse across a range of structural components. Investigations into the underlying failure mechanisms have highlighted the significance of the synergy between material tensile strength and reinforcement properties on member flexure response. Although research into the seismic application of reinforced UHPC continues to expand, relatively little is known about the effects of varying axial load on the plastic hinge response of beam-column elements across a range of UHPC tensile properties and reinforcement levels. Therefore, in this study, the effects of varying tensile properties on beam-column elements through numerical simulations across a range of axial load ratios were investigated. Two dimensional numerical models accounting for material nonlinearities (e.g., bond-slip, UHPC tensile strength and strain capacity) were used to capture component responses. Trends in the moment-drift responses and plastic hinge lengths have highlighted the diminishing returns of using higher fiber volume percentages (2%) as higher axial loads tend to relieve tensile demands. Additionally, existing plastic hinge length expressions for RC components were found to over-predict hinge length consistently while those developed for HPFRCC components accurately predict plastic hinge lengths at low axial load levels.more » « less
-
High performance carbon fibers are widely used as fiber reinforcements in composite material systems for aerospace, automotive, and defense applications. Longitudinal tensile failure of such composite systems is a result of clustering of single fiber tensile failures occurring at the microscale, on the order of a few microns to a few hundred microns. Since fiber tensile strength at the microscale has a first order effect on composite strength, it is important to characterize the strength of single fibers at microscale gage lengths which is extremely challenging. An experimental technique based on a combination of transverse loading of single fibers under SEM with DIC is a potential approach to access microscale gage lengths. The SEM-DIC technique requires creation of uniform, random, and contrastive sub-microscale speckle pattern on the curved fiber surface for accurate strain measurements. In this paper, we investigate the formation of such sub-microscale speckle patterns on individual sized IM7 carbon fibers of nominal diameter 5.2 µm via sputter coating. Various process conditions such as working pressure, sputtering current, and coating duration are investigated for pattern creation on fiber surface using a gold-palladium (Au-Pd) target. A nanocluster type sub-microscale pattern is obtained on the fiber surface for different coating conditions. Numerical translation experiments are performed using the obtained patterns to study image correlation and identify a suitable pattern for SEM-DIC experiments. The pattern obtained at a working pressure of 120–140 mTorr with 50 mA current for a duration of 10 min is found to have an average speckle size of 53 nm and good contrast for image correlation. Rigid body translation SEM experiments for drift/distortion correction using a sized IM7 carbon fiber coated with the best patterning conditions showed that Stereo-SEM-DIC is needed for accurately characterizing fiber strain fields due to its curved surface. The effect of sputter coating on fiber tensile strength and strain is investigated via single fiber tensile tests. Results showed that there is no significant difference in the mean tensile strength and failure strain between uncoated and coated fibers (average increment in fiber diameter of ∼221 nm due to coating) at 5% significance level. SEM images of failure surfaces for uncoated and coated fibers also confirmed a tensile failure of fibers as observed for polyacrylonitrile PAN-based fibers in literature.more » « less
An official website of the United States government

