Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Carbon Fiber Reinforced Plastics (CFRPs) are widely used due to their high stiffness to weight ratios. A common process manufacturers use to increase the strength to weight ratio is debulking. Debulking is the process of compacting a dry fibrous reinforcement prior to resin infusion. This process is meant to decrease the average inter-fiber distance, effectively increasing the fiber volume fraction of the sample. While this process is widely understood macroscopically its effects on fibrous microstructures have not yet been well characterized. The aim of this work is to compare the microstructures of three CFRP laminates, varying only the debulking step in the manufacturing process. High resolution serial sections of all three laminates were taken for analysis. Using these scans, the fiber positions were reconstructed. Statistical descriptors such as local fiber and void volume fractions, fiber orientation, and void distribution and morphology were then generated for each sample. Fiber clusters present within the material were identified and analyzed for each level of debulking applied. Using these descriptors, the effects of debulking on the morphology and organization of the composite microstructure was evaluated.more » « less
-
The transverse tensile strength of composites is susceptible to size effects. Therefore, it is paramount to develop length-scale specific physical test procedures to validate computational models that estimate the transverse composite response using micromechanics. To this end, a computational process modeling and virtual mechanical testing framework are presented in this study to predict the transverse response of composite microstructures subjected to processing conditions. Informed by a comprehensive material dataset, the numerical model is shown to reliably predict the process-induced residual stress generation in composite microstructures and accurately evaluate its influence on their transverse strength prediction. A novel procedure to fabricate thin composite laminates from a single ply of carbon fibers and characterize their transverse tensile response is presented to validate the numerical model. The results show excellent agreement with the virtual test predictions. This study highlights the importance of length-scale specific testing to minimize the influence of size effect on the transverse composite strength.more » « less
-
Carbon fiber reinforced plastics (CFRPs) are widely used due to their high strength to weight ratios. A common process manufacturers use to increase the strength to weight ratio is debulking. Debulking is the process of transversely compacting a dry fibrous reinforcement prior to wet out with the matrix resin, in order to induce fiber nesting, effectively increasing the volume fraction of the sample. While this process is widely understood macroscopically its effects on fibrous microstructures have not yet been well characterized. The aim of this work is to compare the microstructures of three CFRPs, varying only the debulking step in the manufacturing process. The microstructural effects of debulking on three unidirectional CFRPs made from three different levels of debulking were studied. High resolution serial sections of all three samples were taken using the UES ROBO-MET at the NASA Glenn Research Center in Cleveland, Ohio. Using these scans, the fiber positions were measured and connected to make fiber paths. Statistical descriptors such as local fiber and void volume fractions, and void distribution and morphology were then generated for each sample and compared. Using these descriptors, the effects of debulking on the composite microstructure can be measured.more » « less
-
null (Ed.)The effect of residual stress build-up on the transverse properties of thermoset composites is studied through direct and inverse process modeling approaches. Progressive damage analysis is implemented to characterize composite stiffness and strength of cured composites microstructures. A size effect study is proposed to define the appropriate dimensions of Representative Volume Elements (RVEs). A comparison between periodic (PBCs) and flat (FBCs) boundary conditions during curing is performed on converged RVEs to establish computationally efficient methodologies. Transverse properties are analyzed as a function of the fiber packing through the nearest fiber distance statistical descriptor. A reasonable mechanical equivalence is achieved for RVEs consisting of 40 fibers. It has been found that process-induced residual stresses and fiber packing significantly contribute to the scatter in composites transverse strength. Variation of ±5% in average strength and 18% in standard deviation are observed with respect to ideally cured RVEs that neglect residual stresses. It is established that process modeling is needed to optimize the residual stress state and improve composite performance.more » « less
An official website of the United States government

Full Text Available